Variational Inferencefor Visual Tracking

J. Vermaak

Cambridge University
Engineering Department
Cambridge, CB2 1PZ, UK

Abstract

The likelihood models used in probabilistic visual track-
ing applications are often complex non-linear and/or non-
Gaussian functions, leading to analytically intractable in-
ference. Solutions then require numerical approximation
techniques, of which the particle filter is a popular choice.
Particle filters, however, degrade in performance as the di-
mensionality of the state space increases and the support of
the likelihood decreases. As an alternative to particle filters
this paper introduces a variational approximation to the
tracking recursion. The variational inference is intractable
in itself, and is combined with an efficient importance sam-
pling procedure to obtain the required estimates. The algo-
rithm is shown to compare favourably with particle filter-
ing techniques on a synthetic example and two real tracking
problems. The first involves the tracking of a designated
object in a video sequence based on its colour properties,
whereas the second involves contour extraction in a single
image.

1. Introduction

Visual tracking involves the detection and recursive local-
isation of objects in video sequences. Depending on the
application a wide variety of objects may be of interest, in-
cluding faces [6], people [8], cars [9], etc. Recursive track-
ing principles may also be applied to the tracking of ficti-
tious objects in single images, leading to e.g. contour ex-
traction algorithms [11].

Localisation of objects based on image data is a difficult
problem. This is mainly due to the many degrees of freedom
that characterise these problems, including variations due to
changes in object pose and illumination, full and partial ob-
ject occlusions, and many more. These factors all increase
the uncertainty about the exact object location and configu-
ration. To accurately capture this uncertainty a probabilistic
framework is required.

Within a tracking context one particularly popular ap-
proach is Bayesian Sequential Estimation. This framework
allows the recursive estimation of a time-evolving distribu-
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tion that describes the object state conditional on all the ob-
servations seen so far, commonly known as the filtering dis-
tribution. It requires the definition of a Markovian dynami-
cal model that describes how the state evolves, and a model
to evaluate the likelihood of a hypothesised state giving rise
to the observed data. This, in theory, is sufficient to allow
recursive estimation of the filtering distribution. However,
as will be evident, the likelihood models for tracking often
lead to intractable inference, requiring approximation tech-
niques.

One particularly popular approximation method is Se-
quential Monte Carlo Estimation, otherwise known as Parti-
cle Filters [4]. Its popularity stems from its simplicity, gen-
erality and success over a wide range of challenging prob-
lems. It represents the filtering distribution with a set of
samples, or particles, and associated importance weights,
which are then propagated through time to give approxima-
tions of the filtering distribution at subsequent time steps.
It requires only the definition of a suitable proposal distri-
bution from which new particles can be simulated, and the
ability to evaluate the likelihood and dynamical models.

Particle methods, however, suffer from the curse of di-
mensionality. This is further aggravated by the sharply
peaked likelihoods common to many visual tracking prob-
lems. Due to the finite sample approximation only a small
number of particles, if any, are generated in regions of high
likelihood. In the best case this leads to a loss of gener-
ality, i.e. the filtering distribution is represented by only a
small number of distinct particles (often only one), and in
the worst case, a complete loss of track.

This shortcoming has been acknowledged before, and
many strategies have been proposed to circumvent the prob-
lem. A naive, but common, approach is to artificially
broaden the likelihood function. The resulting increase
in the likelihood support makes detection more probable,
but discards important information about the object loca-
tion and configuration. A more elegant technique based
on this idea is the Annealed Particle Filter [3]. At each
time step particles are guided to areas of high likelihood
by an annealing schedule that starts from a broad version



of the likelihood, which is progressively refined until the
target likelihood is achieved. Other strategies can be cate-
gorised as those attempting to build better proposal distri-
butions (e.g. the Unscented Particle Filter [14]), those that
reduce the size of the space explored by particles (e.g. Rao-
Blackwellisation [2]), or those that perform a local explo-
ration of the likelihood surface before predicting new parti-
cles (e.g. the Auxiliary Particle Filter [13] and Local Monte
Carlo methods [10]). However, not all these strategies are
generally applicable to visual tracking problems.

As an alternative to the sample based approximation pro-
vided by particle filters this paper proposes a variational ap-
proximation to the filtering distribution. Based on this, an
EM-like algorithm is derived to estimate the filtering dis-
tribution recursively through time. The approach is derived
for arbitrary likelihood models, and requires only that the
likelihood can be evaluated up to a constant factor. The
variational inference is intractable, and is combined with an
efficient importance sampling procedure to obtain the de-
sired estimates. The variational algorithm effectively cir-
cumvents the problems associated with particle filters by
adapting the importance distribution throughout the update
procedure.

The remainder of the paper is organised as follows. Sec-
tion 2 introduces the model used for tracking. Section 3
describes the general Bayesian sequential estimation pro-
cedure. Section 4 introduces particle filters as an approx-
imation technique for Bayesian sequential estimation. As
an alternative to particle filters, Section 5 develops a varia-
tional approximation to the sequential estimation problem.
Section 6 compares the performance of the variational algo-
rithm with that of the standard and annealed particle filters
on a synthetic example and two real tracking problems. The
first involves the tracking of a designated object in a video
sequence based on its colour properties, whereas the sec-
ond involves contour extraction in a single image. Finally,
Section 7 summarises the main findings of the paper.

2. Model Description

The proposed model is graphically depicted in Figure 1.
The state at time ¢ is denoted by x;, and is assumed to be
comprised of all the variables of interest pertaining to the
object being tracked, e.g. location, scale, orientation, etc.
The uncertainty about the state is captured by assuming it
to be Gaussian distributed, i.e.

p(Xt|iu’ta )‘t) = N(Xt“l’ta At)a

where p, and A, respectively denote the mean vector and
precision matrix. To further capture the uncertainty about
the state distribution the mean vector and precision matrix
are assumed to be unknown random variables to be esti-
mated alongside the state. This endows the model with the

flexibility to capture the uncertainty about the state vari-
ables, together with any correlations that may exist among
these variables.
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Figure 1. Model. Generative system model for tracking
(left) and variational posterior approximation (right).

In visual tracking applications it is often the case that
very little is known beforehand about the object motion. It
is therefore advisable to use motion models capable of cap-
turing a wide range of motions. Even in cases where ac-
curate motion models can be constructed a general model
often performs better since large inaccuracies can result if
the actual object motion deviates from that predicted by the
model. Here the object motion is modelled by assuming the
state mean to follow a Gaussian random walk, i.e.

p(pylpy_q) = N(Nt'ut—lv A),

where X is a fixed precision matrix, set to reflect the region
of uncertainty for the new estimate around the old one. Note
that no generality is lost compared to the conventional ap-
proach that places the dynamics directly on the state itself.
Finally, the uncertainty about the state precision matrix is
captured by assuming it to be Wishart distributed, i.e.

p(Ae) = Wr(Xe]S),

with 7 and S respectively the degrees of freedom and pre-
cision matrix, both assumed to be fixed. The hierarchical
structure of the model effectively results in heavy-tailed dy-
namics on the state x;. The lower the degrees of freedom 7,
the heavier the tails, allowing discrete jumps in the object
trajectory.

For the moment the likelihood p(y:|x:), where y, is a
vector of observations, is left undefined. The tracking al-
gorithms presented in the subsequent sections are appli-
cable to arbitrary likelihood models, which may be non-
linear and/or non-Gaussian, and requires only that the like-
lihood can be evaluated up to a constant factor. The like-
lihood models for the specific tracking applications consid-
ered here are derived in Section 6 where the applications are
introduced.



3. Bayesian Sequential Estimation

Given the model in Section 2 the distribution of interest for
tracking is the posterior p(a|y1.+), also known as the fil-
tering distribution, where a.; = (x¢, p4, A¢) denotes the
extended state, and y1.; = (y1---y:) denotes all the ob-
servations up to the current time step. This distribution can
be obtained according to the recursion

plaly:t) O<p(yt|at)/p(atlat_ﬂp(dat_lIyu_l),

which is initialised by some distribution for the initial state
p(ap). Once the sequence of filtering distributions are
known point estimates of the state can be obtained accord-
ing to any appropriate loss function, leading to e.g. maxi-
mum a posteriori (MAP) and minimum mean square error
(MMSE) estimates.

The tracking recursion yields closed-form expressions
in only a small number of cases. The most well-known
of these is the Kalman filter [1] for linear Gaussian likeli-
hood and dynamical models. For models that are non-linear
and/or non-Gaussian the tracking recursion is analytically
intractable, and approximation techniques are required. The
following two sections introduce approximation techniques
applicable to the model in Section 2.

4. ParticleFilters

Sequential Monte Carlo methods [4], otherwise known as
Particle Filters, have gained a lot of popularity in recent
years as a numerical approximation to the tracking recur-
sion for complex models. This is due to their simplicity and
modelling success over a wide range of challenging appli-
cations.

The basic idea behind particle filters is very simple.
Starting with a weighted set of samples {af_)l, wt(l_)1 N
approximately distributed according to p(a—1|y1:t—1),
new samples are generated from a suitably chosen proposal
distribution, which may depend on the old state and the new
measurements, i.e. aff) ~ q(at|a§1_)1,yt). To maintain a
consistent sample the new particle weights are set to

(3) w§Q1P(Yt|a§Z))
w, ~ X
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The new particle set {aff), wii)}f\il is then approximately
distributed according to p(a|y1.:). Approximations to the
desired point estimates can then be obtained by Monte Carlo
integration. From time to time it is necessary to resample
the particles to avoid degeneracy of the weights (see [5] for
more details).

The performance of the particle filter hinges on the qual-
ity of the proposal distribution. The Bootstrap Filter [7],

which is the first modern variant of the particle filter, uses
the dynamical model as proposal distribution, so that the
new weights become proportional to the corresponding par-
ticle likelihoods. This leads to a very simple algorithm,
requiring only the ability to simulate from the dynamical
model and to evaluate the likelihood. However, it performs
poorly for narrow likelihood functions, especially in higher
dimensional spaces.

To circumvent these problems it is necessary to take
more care in the design of the proposal distribution. In
[5] it is proved that the optimal choice for the proposal (in
terms of minimising the variance of the weights) is the pos-
terior p(aut|ai—1,y:) o p(yt|ow)p(as|a—1). However,
this distribution and its associated weight are rarely avail-
able in closed-form. Many suboptimal strategies have been
proposed to increase the efficiency of the particle filter un-
der these circumstances, e.g. Rao-Blackwellisation [2], the
Unscented Particle Filter [14], the Auxiliary Particle Filter
[13], Local Monte Carlo methods [10], etc. However, not
all these methods are generally applicable. One attractive
suboptimal strategy is the Annealed Particle Filter, intro-
duced in the context of visual tracking in [3]. At each time
step particles are guided to areas of high likelihood by an
annealing schedule that starts from a broad version of the
likelihood, which is progressively refined until the target
likelihood is achieved.

As an alternative to particle filters the next section in-
troduces an approximation to the filtering recursion based
on variational inference. This strategy is compared with the
standard and annealed particle filters on a number of visual
tracking problems in Section 6.

5. Variational Sequential Estimation

This section derives a variational approximation to the
tracking recursion for the model in Section 2. Section 5.1
first gives a brief overview of variational inference, before
Section 5.2 applies it to the sequential estimation algorithm.

5.1. Variational Inference

In a Bayesian setting the objective of variational inference
is to find a tractable and accurate posterior approximation
to an intractable posterior distribution. In this section y de-
notes the observed data, and «, the latent data, including
any model parameters of interest. The objective is often re-
stated as the maximisation of a lower bound on the marginal
log-likelihood, obtained as

=lo a)=lo ap(y7a)
lozp(y) = log [ ply.dv) = Iog [ glde) 225

> /q(da)logp(%a) —/q(da) log q(cx)
= LB(logp(y)),




where the middle line follows from Jensen’s inequality, and
q(ax) denotes the approximation to the posterior distribu-
tion. It is straightforward to show that

plaly)
q(c)

logp(y) — LB(logp(y)) = — / q(de) log

= KL(q(c)|p(aly)),

meaning that maximising the lower bound is equivalent to
minimising the Kullback-Leibler (KL) divergence between
the approximate and true posterior distributions. Here it
is assumed that the approximate posterior distribution fac-
torises over disjoint subsets of «, i.e.

@) = [Jate).

In this case it can be shown (see [15]) that the approximate
posterior distributions that maximise the lower bound are of
the form

q(ax;) o< exp(log p(y, @)1, a(as)s @

where (-),, denotes the expectation operator relative to the
distribution p. This result will be used extensively in the
next section.

5.2. Variational Tracking
For the model in Section 2 the tracking recursion reduces to

P(Xty Byy At|y1:4) < (Ve [xe)P (Xt | g5 At)P(Ae)

X/p('u’t“ttfl)p(dxtflad:u't—ladktflb"l:tfl)- 2

As depicted in Figure 1 it is assumed that the filtering dis-
tribution can be approximated by a factorised form, i.e.

P(xe, o, Aelyre) = q(Xe, oy, Ae) = q(xe)q(peg)q(Xe).

Using this approximation it is shown in what follows how a
variational update procedure can be obtained for the track-
ing recursion. Substituting the variational approximation at
time ¢ — 1 into (2) and simplifying, yields

P(xe, g, Aelyie) o< p(ye|xe)p(xe| gy, At)p(At>QP()u’t)(aS)
with
avloa) = [ plonlialdn )

As will be evident shortly ¢(u,_4) is Gaussian, defined as
q(ps_y) = N(py_q|pi—1, A;_;). Since the evolution for
the state mean is Gaussian as well, g, (1) is also Gaussian,
and of the form

QP(Nt) = N(utluf, Af)v

with .

pr=pio, AV =S+ )T (4)
This is exactly equivalent to the prediction distribution of
the Kalman filter before the new data is seen. With this def-
inition for the prediction distribution all the distributions on
the right hand side of (3) are now known, and variational
inference for the components of the new posterior distribu-
tion can proceed according to (1). For the state mean and
precision the inference leads to closed-form expressions of
the form

q(pey) = Npglf A7), a(Xe) = War (AeS7),

with
B = A () (xe) + A pd)
)\: =\ + )\f

ny=n+1

St = ((xexT) = (o) ()T — () ()T + (osd) +8 )71

()

In the above the expectations relative to the distributions

q(pe,) and q(¢) are given by

N =S5 ) =37 i

6

Due to the general form of the likelihood the expression for

q(x:) does not yield a tractable form. However, it can be
simplified to

() = py,s

q(3xt) o< p(yelxe)N(xe | (ae), (M)

This immediately suggests an importance sampling proce-
dure to obtain a Monte Carlo approximation to g(x;), i.e.

N
T x) = D w6, (dxy),
i=1
with

p(yelx;”)
Sl pyelx’)

(7)
where d,,(d-) denotes the Dirac delta measure on x. Using
this Monte Carlo approximation the required expectations
relative to ¢(x:) can be approximated as

X~ N (e)s (Ae)), wl?) =

N N
(x¢) ~ Z wgz)xgz)7 (x4%;) ~ Z wtz)xgz)xgz)T. ®)
i=1 i=1

Depending on the application it may be possible to incorpo-
rate elements of the likelihood in the proposal distribution,
leading to a more efficient importance sampling procedure.
Only the general case is considered here.



From the expressions above it is clear that the variational
posterior parameters depend on expectations relative to the
components of the variational posterior, which in turn de-
pend on the variational posterior parameters, and so on.
Hence these quantities can be estimated in an iterative fash-
ion, conditional on each other, in a similar manner to the
EM algorithm. The variational posterior parameters are ini-
tialised according to

nf=n+1,
Sr=(2N""+S"

py = pr,

* 9
Al = 207, ©

1)_1.
Note that once n; is set it does not require any further up-

dating. The complete variational sequential estimation al-
gorithm is summarised below.

Algorithm 1 Variational Sequential Estimation

e Input the prior parameters: X, 7, S.
e Initialisation: set p and AJ to sensible values.
e Fort=1,2,---,do:
— Compute the prediction distribution parameters
in (4).
— Initialise the variational parameters as in (9).
— Compute the initial expectations in (6).
— Iterate until convergence:

- Simulate N state samples as in (7).

- Compute the state expectations in (8).

- Update the variational parameters according
to (5).

- Update the expectations in (6).

Convergence of the algorithm can be checked by mon-
itoring the change in the variational posterior parameters,
or using any other convenient convergence criterion. Each
variational update step requires only very simple calcula-
tions, and the computational complexity would largely de-
pend on the cost of evaluating the likelihood. The rate of
convergence in turn depends on the efficiency of the impor-
tance sampling procedure. Since the importance distribu-
tion is adapted with the update iterations, one would expect
successive sample sets to progressively cluster around areas
of high posterior probability, and the effective sample size
to increase.

6. Experimental Results

This section compares the performance of the variational
tracking algorithm with that of the standard and annealed

particle filters on a synthetic example and two real tracking
problems. The first involves the tracking of a designated
object in a video sequence based on its colour properties,
whereas the second involves contour extraction in a single
image.

6.1. Synthetic Example

The purpose of the synthetic example is to establish a base-
line performance comparison on a relatively difficult prob-
lem where the ground truth is known. The synthetic exam-
ple considered here is representative of the problems that
are difficult to solve using particle filtering techniques. The
state consists of the 1D position and radius of an object of
interest!, i.e. x = (p, r). Measurements are taken on a fixed
1D grid of G points, i.e. y = (y1---yg). Measurements
from gridpoints covered by the object are uniformly dis-
tributed, whereas those in the background follow a gamma
distribution. More formally,

%) = Uy(yg)
p(yg| ) {ga(yg|a,b)

Ifge[-pfr,p+r] (10)
otherwise,

where ) is the region of support for the measurements. The
total likelihood is obtained by assuming the gridpoints to
be independent, leading to p(y|x) = [, p(ys|x). This
likelihood is non-linear in x and sharply peaked in the state
space. It is representative of those encountered in visual
tracking applications, e.g. [8].

Measurements

Figure 2: Synthetic data. At each time step measurements
are obtained over a 1D receptor field with 100 detectors.
The brightness of a pixel is proportional to the value of the
measurement. The true object position and radius is also
shown.

Figure 2 shows some synthetic data for 100 time steps
with Y = [0, 255] and (a,b) = (1,0.05). The true state is
superimposed on the data. This data was used to compare
the performance of the tracking algorithms in terms of the

1For brevity the time subscript is suppressed in what follows.



average RMS state estimation error, defined as

Py > (%i(@t A 7))
m=1 t=1

where (p{™,7{™) is the state estimate at time ¢ for the
m-th replication of the experiment, with A/ = 10 in all
cases. The fixed parameters of the model were set to A =
diag(5-2,1), m = 2, S = diag(10, 10), u} = [50,10]%,

= diag(25=2,1072). For the standard particle filter
particles were simulated from the model equations, so that
the weights become proportional to the corresponding like-
lihood values. For the annealed particle filter the likelihood
was annealed using powers ranging linearly from ~; = 0.01
to yr = 1 over R = 20 steps at each time step. The pro-
posal at each annealing step was formed by raising the state
equations to the same power. For all three algorithms state
estimates were obtained by computing the weighted average
of the particles representing the state distribution.

The results are presented in Figure 3. The annealed par-
ticle filter outperforms the standard particle filter, achiev-
ing the same estimation accuracy with only 5% of the parti-
cles required by the standard particle filter. This effect will
be even more pronounced in higher dimensions. However,
the variational algorithm emerges as the superior strategy,
yielding the lowest error rate of the three algorithms for the
same computational effort.
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Figure 3: Error curves. RMS state estimation error and
error bars as a function of the number of particles (left) and
of the average number of floating point operations per time
step (right).

6.2. Object Tracking

This section considers the tracking of a bounding box en-
closing an object or a region of interest in a video se-
quence. However, more general object models can eas-
ily be accommodated. The reference bounding box to
be tracked is specified by the user, and parameterised as
Bret = (Tref, Yrefs oy ly), Where (z,cr, yrer) IS the centre
of the bounding box, and I, and [, are the bounding box

width and height, respectively. For the tracking the state
of the bounding box is taken to be x = (z,y, Sz, Sy), SO
that the corresponding hypothesised bounding box becomes
By = (2,9, $zls, syly). The variables s, and s, thus act as
scale factors. The measurements are taken to be the nor-
malised histograms of the pixel colour components within
the bounding box, i.e. y = (hf ,h%  hZ ). Note that the
measurements depend on the object state. The likelihood
for a hypothesised state is defined as

p(Y|X7 Bref) X exp (* (D(hng hgref)
+ D, hE )+ D(hE, hE ) /20%),

where D(hy, hy) is the Bhattacharyya distance between the
normalised IV}, bin histograms h; and hs, defined as

(hl ) h2

(kZM)

Thus the closer the colour histograms in the hypothesised
bounding box are to the corresponding colour histograms in
the reference bounding box, the higher the likelihood for the
hypothesis. The width of the likelihood is controlled by the
variance parameter 2. This likelihood is highly non-linear
due to the mapping from the state to the measurements. A
similar model was employed in the context of object track-
ing before in [12].

This model, with N, = 30 and ¢ = 0.1, was used
to track the head of the small child in the video se-
quence for which a number of keyframes appear in Fig-
ure 4. The fixed parameters of the model were set to A =
diag(5~2,572,10%, 10%), @ = 4, S = diag(10, 10, 10, 10),
s = [Tref,Yres, 1, 1]T, Ay = diag(572,572,10%, 10%).
The algorithm settings for the standard and annealed par-
ticle filters were similar to those for the synthetic example
in the previous section. As before, state estimates were ob-
tained by computing the weighted average of the particles
representing the state distribution.

Note that for this sequence no ground truth is available.
To establish a performance criterion the region correspond-
ing to the reference bounding box was hand labelled in a
number of frames evenly spaced over the video sequence.
Given these labelled frames a performance score can be de-
fined as

1 /1 243"
s=51 2 (g2

=1 teL AR-,t + Agz)

) € [0,1],

where L is the set of indices for the labelled frames, Ag +

and A(m are the areas of the labelled bounding box and the
boundmg box corresponding to the state estimate in frame

t, respectively, A (m) is the area of the overlap between the
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Figure 4: Object tracking results. Tracking the bounding box around the head of the child using the standard particle filter
(red), the annealed particle filter (green), and the variational algorithm (yellow). In all cases 100 particles were used. The
regions corresponding to the reference bounding box are shown in blue. In the first part of the sequence all three algorithms
successfully track the object. In frame 223 the particle filter loses lock due to the colour ambiguity of a nearby region, and
never recovers. From time to time the annealed particle filter loses track as well (frames 241 and 259), but is able to recover
(frame 268). In contrast the variational algorithm maintains lock throughout, except for a brief period around frame 401

where it moves to the arm of the child.

labelled and estimated bounding boxes in frame ¢, and m
is an index ranging over the number of independent exper-
iments, 10 in this case. Thus the score is a performance
measure that ranges between 0 (no overlap in any of the la-
belled frames) and 1 (perfect overlap in all of the labelled
frames).

The performance results are presented in Figure 5. For
all three methods the performance increases significantly
with an increase in the number of particles, up to roughly
100 particles, after which the performance remains more-
or-less constant. On average the annealed particle filter
performs better than the standard particle filter, but this in-
crease should be offset against the large increase in compu-
tational cost. As was the case for the synthetic example the
variational algorithm significantly outperforms the particle
filtering techniques for a comparative computational effort.

Representative tracking results for all three algorithms,
using 100 particles, are depicted in Figure 42. Due to colour
ambiguities in nearby regions the standard particle filter
loses track early in the sequence, and fails to recover. For
the same reason the annealed particle filter also loses track
from time to time, but the mechanism of annealing the like-
lihood allows it to recover. In contrast the variational algo-
rithm maintains lock throughout, except for a brief period
towards the end of the sequence.

2The video from which these results have been extracted accompanies
this submission.
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Figure 5: Score curves. Tracking score and error bars as a
function of the number of particles (left) and of the average
computational expense per time step (right).

6.3. Contour and Road Extraction

A slightly modified version of the likelihood model in (10)
can be applied to the problem of image contour extraction.
The measurements are the norm of the spatial gradient of
the image I(¢,z), i.e. y = |VI|, which are known to fol-
low an exponential distribution in natural images, and com-
plex distributions over contours of interest [11]. Viewing a
contour as a single point to be tracked over an image, the
model with » = 0 and a = 1 is a sensible configuration to
accomplish this task. In this case the likelihood becomes
p(y|x) o< exp(byp). In comparison with the Gaussian prior
used in [11] the heavy-tailed dynamics of the model pre-



sented here allows for more abrupt changes in direction,
and hence more robust contour tracking in the presence of
corners. The performance of the variational algorithm is
illustrated in Figure 6 and compared, as before, with the
standard and annealed particle filters.

Figure 6: Contour extraction. Comparison of the different
tracking algorithms on a difficult single contour extraction
problem (left), and variational twofold contour extraction in
an aerial photograph (right).

Returning to the 2D position/radius state x = (p, ), it
is possible to jointly track the two sides of ribbon-shaped
objects, such as roads in aerial images or tubular struc-
tures in endoscopic images. The likelihood in this case be-
comes p(y|x) x exp(b(yp+r+yp—r)). Anexample of such
twofold contour extraction is shown in Figure 6.

7. Conclusions

As an alternative to particle filtering techniques this pa-
per introduced a variational approximation to the intractable
tracking recursion resulting from the non-linear and/or non-
Gaussian likelihood models common to visual tracking ap-
plications. The performance of the variational algorithm
was shown to be superior to that of the standard and an-
nealed particle filters on a synthetic example and two real
tracking problems. It is expected to degrade in performance
less severely than particle filtering techniques with an in-
crease in the dimensionality of the state space and a de-
crease in the support of the likelihood. Future work will
extend the algorithm to deal with multi-modality and to ac-
commodate more general state distributions.
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