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Abstract. We detail a Bayesian interpolation procedure for linear-
in-the-parameter models which combines both effective complex-
ity control and robustness to outliers. Robustness is obtained by
adopting a Student-t noise distribution, defined hierarchically in
terms of an inverse-Gamma prior distribution over individual Gaus-
sian observation variances. Importantly, this hierarchical definition
enables practical Bayesian variational techniques to concurrently
determine both the primary model parameters and the form of
the noise process. We show that the model is capable of flexibly
inferring, from limited data, both Gaussian and more heavily-tailed
Student-t noise processes as appropriate.

INTRODUCTION

We consider the classic problem of interpolation where the observation vari-
ables are assumed to be noisy. Our data comprises N input-observation pairs
{xn, yn}, and we focus on interpolation models linear in the parameters,
where the interpolant f(x) is expressed in terms of M fixed basis functions
φm(x), m = 1, . . . , M , weighted by some corresponding parameters θm:

f(x) =
M∑

m=1

θmφm(x). (1)

While the nonlinear functions φm(x) are fixed, f(x) may still be very flexible
if a large set of basis functions is utilised. This, of course, depends on the use
of effective complexity control techniques, as exemplified by the recent and
popular “support vector machine” [8] and “sparse Bayesian” [7] frameworks.

Given (1), it is conventional (and usually realistic) to assume that the
observation variables deviate from the functional mapping by some additive
i.i.d. noise process: yn = f(xn) + εn. Typically, this noise process might be
specified as Gaussian: i.e. p(εn|σ2) = N (εn|0, σ2). While not always realistic,



this specification, along with the choice of linear predictor (1), facilitates a
Bayesian treatment of the parameters θ = (θ1, . . . , θM ), since, for a Gaussian
prior, the posterior and marginal likelihood are both similarly Gaussian.

An acknowledged limitation of the Gaussian noise model is that it is
not robust, in that if the observation values are contaminated by outliers,
the accuracy of the predictor f(x) can be significantly compromised. The
outliers may perhaps represent corrupted observations or be genuine samples
from a heavy-tailed noise process. In such circumstances, one might utilise
a more robust (correspondingly heavier-tailed) noise distribution, such as a
zero-mean Student-t, conventionally defined as:

p(εn|ν, σ) =
Γ((ν + 1)/2)
Γ(ν/2)

√
πνσ

{
1 +

1
ν

(εn

σ

)2
}−(ν+1)/2

, (2)

where ν is the ‘degrees of freedom’ parameter and σ the ‘scale’ parameter [3].
However, the use of this distribution renders the Bayesian integration over
θ analytically intractable, and the main statistical interest in this model has
focussed on stochastic approximations, e.g. [4, 5].

Alternatively, there has been some recent interest in variational deter-
ministic approximation techniques for robust Bayesian modelling, using noise
distributions that are mixtures of zero-mean Gaussians [6, 2]. In fact, this
approach can be unified with the Student-t framework since that distribution
may be realised as an infinite such mixture using the following hierarchical
specification:

p(εn|c, d) =
∫ ∞

0

p(εn|βn)p(βn|c, d) dβn, (3)

where

p(εn|βn) = N (εn|0, β−1
n ), (4)

p(βn|c, d) = Gamma(βn|c, d) =
dc

Γ(c)
βc−1

n exp(−βnd), (5)

with Γ(c) the ‘gamma’ function. In terms of the parameterisation (2), the
equivalent distribution is obtained with ν = 2c and σ =

√
d/c. Effectively,

equation (3) specifies that the noise model is a mixture (average) of an infinite
number of Gaussians of varying precisions (inverse variances) βn, with the
mixture weight for a given βn specified by the Gamma distribution p(βn|c, d).

This decomposition of the noise model into separate Gaussian and Gamma
components allows convenient application of variational methods, and we de-
scribe in the next section how this leads to an effective Bayesian inference
procedure. In practical terms, we variationally approximate the Bayesian in-
tegration over all model parameters, with the exception of c and d, for which
we find point estimates. The power of this method is that it enables us to
estimate posterior distributions over all model parameters, while simultane-
ously learning a flexible model of the noise process p(εn|c, d). Furthermore, as
c →∞, this distribution tends to a Gaussian and so, as we subsequently illus-
trate, we can obtain improved interpolants when outliers are present without
sacrificing the facility to treat the noise as Gaussian if supported by the data.



VARIATIONAL INFERENCE FOR THE HIERARCHICAL
STUDENT-t NOISE MODEL

The Desired Bayesian Posterior

Given the observations y = (y1, . . . , yN )T, we desire to compute the Bayesian
posterior distribution over all unknowns by applying Bayes’ rule:

p(θ, α, β|y) =
p(y|θ,α, β) p(β|c, d) p(θ|α) p(α|a, b)

p(y)
, (6)

where the likelihood term is given by:

p(y|θ, α, β) = (2π)−N/2
N∏

n=1

β1/2
n exp



−

βn

2

[
yn −

M∑
m=1

θmφm(xn)

]2


 , (7)

and the prior terms by:

p(θ|α) =
M∏

m=1

N (θm|0, α−1
m ), (8)

p(α|a, b) =
M∏

m=1

Gamma(αm|a, b), and (9)

p(β|c, d) =
N∏

n=1

Gamma(βn|c, d), as given earlier. (10)

For the parameters, note that we have specified a Gaussian prior (8)
such as utilised in “sparse Bayesian” models [7], where the prior parame-
ter probabilities depend on independent hyperparameters α = (α1, . . . , αM ).
These hyperparameters are in turn controlled by Gamma distributions pa-
rameterised by a and b, which may be fixed to very small values to obtain
relatively flat (uninformative) hyperpriors over each αm. The only other
variables not treated probabilisitically are the key noise parameters, c and d,
which will be discussed in more detail shortly.

Variational Approximation

Unfortunately, we cannot compute the posterior (6) analytically as the de-
nominator p(y) necessitates an intractable integration. Instead, here we
adopt a variational approximation scheme as follows.

We note first that log p(y) can be expressed as the difference of two terms:

log p(y) ≡ log p(y, θ, α, β)− log p(θ,α, β|y), (11)

from which we write

log p(y) = log
{

p(y, θ, α,β)
Q(θ, α, β)

}
− log

{
p(θ, α,β|y)
Q(θ, α, β)

}
, (12)



where we have introduced an arbitrary ‘approximating’ distribution Q(θ, α,β).
Integrating both sides of (12) with respect to Q(θ,α, β) gives

log p(y) =
∫

Q(θ, α, β) log
{

p(y, θ, α, β)
Q(θ,α,β)

}
dθdαdβ

−
∫

Q(θ, α, β) log
{

p(θ, α, β|y)
Q(θ,α,β)

}
dθdαdβ,

= L [Q(θ, α,β)] + KL [Q(θ,α,β)|| p(θ, α, β|y)] , (13)

since Q(θ, α,β) is a distribution and integrates to one. The second term
in (13) is the Kullback-Leibler divergence between the approximating dis-
tribution Q(θ,α, β) and the posterior p(θ, α,β|y) that we desire. Since
KL[Q(θ,α, β)|| p(θ, α, β|y)] ≥ 0, it follows that L [Q(θ, α, β)] is a rigorous
lower bound on log p(y). We can therefore obtain an approximation to the
posterior indirectly by maximizing L [Q(θ,α,β)] with respect to Q(θ, α, β),
as this must simultaneously minimize the Kullback-Leibler divergence.

This then leaves the question of how to specify Q(θ,α, β). While one
can adopt some parameterised form, it has been shown [9] that if we simply
assume that θ, α and β are a posteriori separable, such that Q(θ,α, β) =
Qθ(θ)Qα(α)Qβ(β), then L [Q(θ, α,β)] is maximized by inspection:

Qθ(θ) ∝ exp〈log p(y,θ,α, β)〉Qα(α)Qβ(β), (14)

with symmetric expressions for Qα(α) and Qβ(β). The expectations in,
and normalisations of, (14) are readily computed when the distributions of
interest are appropriately conjugate and exponential1, and these are given
shortly. Note, however, that the solutions for Qθ(θ) et al. are mutually
dependent, so in practice we must iteratively cycle through them, improving
(raising) the lower bound with each such iteration.

The Q-distributions

The parameters in the interpolant.

Qθ(θ) = N (θ|µ,Σ), (15)

with
Σ = (ΦTBΦ + A)−1 µ = ΣΦTBy, (16)

and we define Φnm = φm(xn), A = diag (〈α1〉, 〈α2〉, . . . , 〈αM 〉) and B =
diag (〈β1〉, 〈β2〉, . . . , 〈βN 〉).

1Further useful background on the use of variational techniques in this context, and
details of an experimental software package, may be found in [1].



The hyperparameters.

Qα(α) =
M∏

m=1

Gamma(αm|ã, b̃m), (17)

with

ã = a +
1
2

b̃m = b +
〈θ2

m〉
2

. (18)

The noise process.

Qβ(β) =
N∏

n=1

Gamma(βn|c̃, d̃n), (19)

with
c̃ = c +

1
2

d̃n = d +
1
2

(
y2

n − 2ynφT
n〈θ〉+ φT

n〈θθT〉φn

)
. (20)

Expectations following from and required to evaluate the above are:

〈θ〉 = µ 〈θθT〉 = µµT + Σ, (21)

〈αm〉 = ã/b̃m 〈βn〉 = c̃/d̃n. (22)

The Variational Lower Bound

From equations (13) and (7–10), the variational lower bound on p(y) is:

L [Q(θ, α,β)] =〈log p(y|θ, β)〉+ 〈log p(θ|α)〉+ 〈log p(α|a, b)〉+ 〈log p(β|c, d)〉
− 〈Qθ(θ)〉 − 〈Qα(α)〉 − 〈Qβ(β)〉.

(23)

where

〈log p(y|θ, β)〉 =
1
2

N∑
n=1

〈log βn〉 − 〈βn〉
(
y2

n − 2ynφT
n〈θ〉+ φT

n〈θθT〉φn

)
,

(24)

〈log p(θ|α)〉 =
1
2

M∑
m=1

〈log αm〉 − 〈αm〉〈θ2
m〉, (25)

〈log p(α|a, b)〉 = Ma log b−M log Γ(a) + (a− 1)
M∑

m=1

〈log αm〉 − b

M∑
m=1

〈αm〉,

(26)

〈log p(β|c, d)〉 = Nc log d−N log Γ(c) + (c− 1)
N∑

n=1

〈log βn〉 − d

N∑
n=1

〈βn〉,

(27)



〈Qθ(θ)〉 = −M

2
log(2πe)− 1

2
log |Σ|, (28)

〈Qα(α)〉 =
M∑

m=1

[
(ã− 1)〈log αm〉 − b̃m〈αm〉+ ã log b̃m − log Γ(ã)

]
, (29)

〈Qβ(β)〉 =
N∑

n=1

[
(c̃− 1)〈log βn〉 − d̃n〈βn〉+ c̃ log d̃n − log Γ(c̃)

]
, (30)

where we use the results 〈log αm〉 = ψ(ã)−log b̃m and 〈log βn〉 = ψ(c̃)−log d̃n,
with ψ(·) the ‘psi’ or ‘digamma’ function, defined as ψ(x) = ∂/∂x[log Γ(x)].

Since the bound must always increase, it can be monitored during the
update procedure as a check on the computations and on convergence.

The Noise Process

Ideally, we would prefer to specify prior distributions over c and d and include
them in (6). However, there are no appropriate conjugate priors for both
parameters compatible with the adopted variational framework. Instead,
with the Q-distributions over all other parameters fixed, we maximise the
bound L [Q(θ, α, β)] with respect to c and d with the aim of increasing the
marginal likelihood p(y) (although this is not guaranteed). In (23), only the
term (27) depends on c and d, and we obtain:

∂〈log p(β|c, d)〉
∂c

= N log d−Nψ(c) +
N∑

n=1

〈log βn〉, (31)

∂〈log p(β|c, d)〉
∂d

=
Nc

d
−

N∑
n=1

〈βn〉. (32)

Setting these gradients to zero does not lead to a joint closed-form solution,
and we chose to perform a short scaled conjugate gradient (SCG) optimisation
in conjunction with the Q-updates.

Estimation Procedure Summary

For our experiments, we chose a broad hyperprior with a = b = 10−6. For
the noise process, we chose c = 0.04 and d = 0.01, so as to specify a mean
prior standard deviation for ε of σ = 0.5 (see Figure 2 for an illustration).

We then cycled through the Q-distribution updates, starting for conve-
nience with Qθ(θ). Every 5 sets of updates for all distributions, we performed
10 cycles of SCG optimisation of c and d (this could be performed at every
Q-update if desired, but is almost certainly wasteful of computation).

We chose to terminate when none of the changes at each update to 〈θ〉,
log〈αm〉 or log〈βn〉 was greater than some threshold, here 10−12. At termi-
nation, quantities of interest are the mean interpolant, f(x) computed with
θ = 〈θ〉, and the inferred noise distribution p(ε|c, d) utilising the optimised
values of c and d.



EXAMPLES

Synthetic Data

We first illustrate performance of the algorithm on univariate synthetic data
generated from the function sinc(x) = (sin x)/x with both additive Gaussian
and Student-t noise. We fitted a sparse Bayesian interpolation model using
both standard Gaussian and the presented variational Student-t noise mod-
els. The intention is to show that the variational procedure can recover the
underlying generator in both cases. Note that in the figures which follow,
converged posterior mean interpolants 〈f(x)〉Q(θ,α,β) are shown.

Figures 1 and 2 show the results for N = 100 equally-spaced examples in
[−10, 10] with Gaussian noise of standard deviation σ = 0.25. ‘Gaussian’ ba-
sis functions, located on the data such that φm(x) = exp{−[(x− xm)/2.0]2},
were utilised.
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Figure 1: Left: interpolants for the two noise models. Right: the inferred noise
distribution p(ε|β) for the Gaussian model, p(ε|c, d) for the Student-t. In this and
following plots, ‘truth’ will be indicated in grey, a Gaussian-only model with a
dashed trace, and the variational Student-t in a solid trace. Here, the Gaussian
and Student-t results are practically coincident.

Figure 1 indicates that both models perform well in this case and, impor-
tantly, the adapted noise distribution p(ε|c, d) for the variational Student-t
does appear Gaussian. Figure 2 (left) shows the inferred prior over the noise
standard deviation, a re-scaling of p(β|c, d), which should ideally be a δ-
function at σ = 0.25. This plot shows a typical result: considering that
the model parameters are being simultaneously estimated, the variational
Student-t approach has arguably provided a very good approximation to the
‘truth’. Figure 2 (right) shows the mean noise standard deviation estimated
for multiple runs on the ‘sinc’ data with varying generative noise levels. The
graph shows a reasonable fit to the generative noise level, though it cannot
provide any further evidence of the ‘Gaussianity’ of p(ε|c, d).
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Figure 2: Left: the estimated prior over the noise level, showing also the initialisa-
tion. Right: the mean estimated noise for multiple runs with varying noise levels.
The solid line shows the ideal case, and the dashed line shows a trace through the
average of the mean estimates for each generative noise level.

Figures 3 and 4 show results for Student-t noise with ν = 4 degrees of free-
dom and scale parameter σ = 0.22 (equivalent to a hierarchical formulation
with c = 2 and d = 0.1). In this case, Figure 3 (left) shows that the varia-
tional Student-t model is qualitatively superior, in that it is less perturbed
by outlying data (and so a better fit to the generator). Figure 3 (right) shows
that we have successfully learned the change in character of the noise process,
which is re-iterated by the plot of Figure 4 (left), equivalent to that of Figure
2 (left). In Figure 4 (right), the estimate of the noise distribution p(ε|c, d) is
shown for several other values of c and d. It is notable, and we found this
to be typical in other experiments, that as the noise process becomes more
Gaussian, the estimate of c (and so the shape parameter ν) is considerably
less accurate (although the estimate improves with more data).
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Figure 3: Left: interpolants for Student-t noise. Right: inferred noise distributions.
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Figure 4: Left: the estimated prior over the noise standard deviation. Right: noise
distributions, ‘true’ in gray, estimate in black, for other values of c and d. The
shape parameter ν is increasing (becoming ‘more Gaussian’) left to right, while the
upper/lower rows illustrate smaller/greater noise scales σ.

Accelerometer Data

We now illustrate the performance of the approach on a real signal where
the noise process cannot be expected to be exactly Gaussian or Student-t.
We consider the smoothing of an angular ‘tilt’ signal that is received via
an AM radio link from a dual-accelerometer I.C. mounted on an ‘electronic
pen’. The data stream is inherently noisy, with a distribution that can be
expected to deviate from Gaussian. One approach to smoothing out this
noise is the use of a Bayesian interpolation model, but this is complicated by
data contamination that occurs due to occasional interference on the radio
link. It is these outlying values that are particularly problematic.

Figure 5 (a) illustrates one channel of data obtained by mounting the pen
in a calibration rig set up to rotate the pen in a consistent circle. Although we
don’t know ground truth, the ideal output should be sinusoidal of constant
amplitude and frequency, and plotting one channel against the second should
give a perfect circle. Two outliers due to radio-link interference are evident
in the portion of the data shown in Figure 5(a), and the Student-t model is
seen to be less compromised by the outliers and more consistently sinusoidal.

(a)

Gaussian
Student−t

(b)
(c)

Figure 5: (a) Raw tilt data with Gaussian and Student-t interpolants. (b) XY plot
using second channel, not shown in (a), for the Student-t interpolant. (c) XY plot
for the Gaussian interpolant.



SUMMARY

Figures 1–4 illustrate that with even relatively limited data (100 observations
here), the variational procedure is capable of recovering appropriate estimates
of the underlying character of both Gaussian and Student-t noise processes, at
the same time as performing an effective Bayesian estimation of the primary
model parameters.

In practice of course, it is not expected that all significantly non-Gaussian
noise processes will be exactly Student-t, as synthesized for Figures 3 and 4.
However, even if the model is not an exact match, we would argue, and Figure
5 offers evidence to support this, that in many cases an adaptive Student-
t model would offer superior results to a Gaussian for noise processes with
significant tails or where outliers occur.

Finally, we do not exclude that for outlying data alone, mixture-based
approaches [6, 2] might perform comparably well given appropriate tuning,
and the algorithm presented here complements and extends those methods
to offer a practical and effective Bayesian toolkit for robust interpolation.
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