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Abstract

Several state�of�the�art techniques� a neural network� Bayesian

neural network� support vector machine and naive Bayesian classi�

�er are experimentally evaluated in discriminating �uorescence in�situ

hybridization �FISH	 signals� Highly�accurate classi�cation of signals

from real data and artifacts of two cytogenetic probes �colours	 is re�

quired for detecting abnormalities in the data� More than ��
�� FISH

signals are classi�ed by the techniques into colour and as real or arti�

fact with accuracies of around �
� and 

�� respectively� The results

of the comparison also show a trade�o� between simplicity represented

by the naive Bayesian classi�er and high classi�cation performance

represented by the other techniques�
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� Introduction

In recent years� �uorescence in�situ hybridization �FISH� has emerged as one

of the most signi�cant new developments in the analysis of human chro�

mosomes� FISH o	ers numerous advantages compared with conventional

cytogenetic techniques since it allows numerical chromosome abnormalities

to be detected during normal cell interphase� One of the most important

applications of FISH is dot counting� i�e�� the enumeration of signals �also

called dots� within the nuclei� Dot counting is used for studying numeri�

cal chromosomal aberrations in e�g�� haematopoietic neoplasia� various solid

tumours� prenatal diagnosis and for demonstrating disease�related chromo�

somal translocations �
��

However� a major limitation of the FISH technique for dot counting is the

need to examine large numbers of cells� This is required for an accurate esti�
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mation of the distribution of chromosomes over cell population� especially in

applications involving a relatively low frequency of abnormal cells� As visual

evaluation by a trained cytogeneticist of large numbers of cells and enumera�

tion of hybridization signals is expensive and time�consuming� FISH analysis

for dot counting can be expedited by using an automatic procedure ����

One approach to dot counting relies on an auto�focusing microscope to

select the �clearest
 image for the analysis ���� However� basing dot counting

on auto�focusing has some shortcomings ���� Instead� it has been recently

proposed ��� to base FISH dot counting on images that are sampled at a �xed

focal plane� The method enables most of the shortcomings of auto�focusing

to be overcome� since it shortens the length of image acquisition and requires

no special instrumentation� However� since the system captures images that

contain many more unfocused signals� its ability to distinguish between fo�

cused ��real
� signals and unfocused ��artifact
� signals needs to be better than

that of a system employing an auto�focusing mechanism� Therefore� the pro�

posed system depends upon two components� well�discriminating features to

represent valid and artifact signal data and a highly�accurate framework to

classify the signals�

Our previous work ��� has investigated the �rst component of feature

representations for FISH signals� In the present work� we experimentally

�



compare state�of�the�art classi�ers in discriminating valid and artifact signals

of two colours� We divide the classi�cation procedure into two� classi�cation

of signals into colour and classi�cation of signals as �real
 and �artifact
� In

both cases� two�class classi�ers are sought�

Section � of the paper describes stages of FISH image analysis that pre�

cede signal classi�cation� Section � presents the four two�class trainable clas�

si�ers� a neural network� Bayesian neural network� support vector machine

and naive Bayesian classi�er that are evaluated for FISH signal classi�cation�

The experimental study is depicted in Section �� while conclusions for this

work are summarised in Section ��

� FISH image analysis

��� FISH acquisition

The process of preparing� hybridizing and screening FISH samples� as well as

the procedure of capturing FISH images were described in Lerner et al� ���� A

total of ��� images were collected from �ve slides and stored in TIFF format�

An example of a FISH image used for dot counting is shown in Figure 
� where

red and green �uorophores �signals�� corresponding to chromosomes �
 and


� respectively� are seen on blue stained nuclei�
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��� FISH colour image processing and segmentation

By analysing each of the three colour channels � red� green and blue �RGB�

of a FISH image separately and in various combinations� image processing

can be facilitated� Nuclei can be analysed using the blue channel of the RGB

image� whereas red and green signals are analysed separately in the red and

green channels� respectively�

Segmentation on each of the three channels of the RGB image using

global thresholds yields the image nuclei and red and green signals ���� Noise

elimination and boundary smoothing of nuclei� as well as spatial correlation

between nuclei and signals� complete the segmentation�

��� Signal feature measurement

Following segmentation� signals are characterized by sets of pixel intensities�

A set �signal� can include one or many members �contiguous pixels�� Since

the content and dimension of each set can vary dramatically from signal to

signal� raw data �intensities� are not considered discriminating enough to act

as features for classi�cation� It is therefore necessary to determine a more

discriminating and compact representation of the data� One representation

can be derived by measuring a set of features of the signal� The features

include area �a size measure� and eccentricity �a shape measure�� which have
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been previously suggested ���� In addition� we measure a number of spectral

features ���� We compute� at the speci�c colour plane� three RGB intensity�

based measurements� the total and average channel intensities and the chan�

nel intensity standard deviation� Following the conversion of RGB to HSI

colour format ���� we can also compute four HSI �hue� saturation� intensity�

based measurements� maximum hue� average hue� hue standard deviation�

and delta hue� Delta hue is the di	erence between the maximum and average

hue normalized by the average hue� This feature has been added to the set

because it was observed that the di	erence between values of the average and

maximum hue for real signals is usually near zero� whereas for some kinds

of artifacts �e�g� overlap of two di	erent �uorophores� this di	erence is sub�

stantially large� Two additional features of the set are the two coordinates of

the eigenvector corresponding to the largest eigenvalue of the red and green

intensity components of the signal� The last feature is the signal average

grey intensity� More details about these features and a motivation for their

selection are given elsewhere ���� Table 
 lists the twelve features used in the

work�
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� An Overview of Several State�of�the�Art

Two�Class Classi�ers

Consider a training dataset D which consists of N data points with binary

class labels ft� � � � tNg and vectors of inputs fx� � � �xNg� We assume that the

data was generated by some true underlying function y�x�� Our objective

is to learn the parameters ��� of some approximating function f�x� ���� whose

form is dependent on our model choice� M� so that we may make �good

predictions
 about our class labels�

��� Neural networks

For a neural network �NN�� we choose a model which predicts the posterior

probability of class membership� We de�ne a likelihood function as ���

p�Dj���� �
NY
n��

f�xn� ����
tn �
� f�xn� �����

���tn� � �
�

The approximating function� f � is represented by the output of an NN with

H hidden nodes in its single hidden layer

f�xn� ���� � �

�
HX
h��

vhg�u
T
hxn�

�
� ���

The parameters ��� have been split into the input to hidden weights represented

by H vectors uh� each vector being the weights that �fan�in
 to hidden node h�
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and v� the vector of the hidden to output weights� consisting of H elements

vh� We have omitted biases for notational simplicity� We take the activation

function g to be a hyperbolic tangent� and ���� is the logistic sigmoid function

��z� �




 � exp��z� ���

which constrains the output of the network to be between � and 
 allowing

us to interpret f as the probability P �C�jx� that an input vector x belongs

to class C��

We may now de�ne an �error function
 as the negative log likelihood

leading to the cross entropy error function

� ln p�Dj���� � �
NX
n��

ftn ln�f�xn� ����� � �
� tn� ln�
� f�xn� �����g � ���

This error function may be minimised by a gradient�based optimisation

method�

By using enough hidden units we may obtain a training error of zero�

However� the resulting network will not generalise well on previously unseen

data� We need to resort to a sub�partition of the training data known as

a validation set to determine an appropriate number of hidden units� The

unseen data are then tested on a network with that number of hidden units�
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��� Bayesian neural networks

In the previous section we reviewed maximum likelihood learning for NNs�

Now we brie�y introduce the Bayesian approach for inferring parameters of

an NN� In Bayesian learning we take our parameters to be random variables

and we aim to determine their posterior distribution� for use in making

predictions

p����jD� �
p�Dj����p�����R
p�Dj����p�����d��� � ���

where the likelihood p�Dj���� has already been de�ned in Equation 
� and we

must specify a prior distribution p����� for the weights� The use of the prior

is the main area of controversy in the Bayesian approach since it requires

an interpretation of probabilities as being equivalent to �beliefs
 ���� The

classical frequency�based de�nition of probabilities does not allow for such

an interpretation� The prior represents our belief about what the weights

should be before we see the data� A zero mean Gaussian prior is often used

p����� � N ���



�
I� ���

where � is a �hyper�parameter
 which speci�es the inverse width of the prior�

This prior re�ects a belief that negative weights are as likely as positive

�This posterior distribution should not be confused with the posterior probability of

class membership�
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weights� and that smaller weights are more probable than larger weights�

leading to smoother functions and better generalisation� Once the prior

has been selected the integration in Equation � may be performed� To make

predictions we look at the expected output of the network under the posterior

distribution

hf�x� ����i �
Z

f�x� ����p����jD�d���� ���

which is the posterior probability of C� for a new input vector x�

Unfortunately for neural networks� the integrals required are non�analytic

to compute and we must resort to approximations� There are various ap�

proaches� in particular the Laplace approximation ��� ��� variational ap�

proaches ��� 
�� 

� and Monte�Carlo sampling �
��� We follow the lat�

ter approach which involves obtaining samples f���� � � � ���Sg from the posterior

distribution� and using them to make sample�based approximations to the

required expectations�

hf�x� ����i � 


S

SX
s��

f�x� ���s�� ���

In particular� we can employ hybrid�Monte�Carlo techniques which make use

of gradient information in the sampling�
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��� The support vector machine

The support vector machine is a technique for classi�cation and regression

which arises from the �eld of statistical learning theory� In this work we

only give a brief overview of the support vector machine �for a more detailed

introduction see �
�� 
���� We de�ne a �loss function
� L� which is the penalty

for a classi�cation mistake� Consider �rst the risk functional� which is the

expected value of the loss function under the joint probability of the data

R����� �

Z
L�t� f�x� �����p�t�x�dtdx ���

Ideally� to obtain the best approximation f�x� ���� we would minimise the

risk functional with respect to ���� Unfortunately the probability distribution

of the data p�t�x� is unknown� Instead� we can look to a sample�based

approximation to Equation � known as the empirical risk�

Remp����� �



N

NX
n��

L�tn� f�xn� ������ �
��

where we have assumed that our observed data points are independently

drawn from the same distribution� The empirical risk may be minimised

to obtain an approximation to y�x�� This is equivalent to the maximum

likelihood approach for neural networks discussed in section ��
�

Statistical learning theory relies on notions of capacity which re�ect the

number of patterns that a classi�er may store� If the capacity of our classi�er







is not in�nite� the value of the empirical risk will converge to that of the risk

functional as the number of data points tends to in�nity �
��� Furthermore�

it is possible to place bounds on the rate of convergence which hold with a

certain con�dence� normally taken to be ���� These bounds are functions of

the model capacity which is often quanti�ed in terms of the VC dimension

�
��

R����� � Remp����� �Rstruct�M� �

�

where Rstruct is known as the structural risk and is a function which increases

with increasing model capacity�

The principal of structural risk minimisation is to minimise not only the

empirical risk but also the structural risk� through capacity reduction� to

obtain the best classi�er� This is the underlying theory of the support vector

machine�

In the case of binary classi�cation� the support vector machine aims to

place a separating hyper�plane between the two classes� Naturally� there are

cases where a linear decision boundary does not exist and for these cases we

must look to kernel functions� The kernel functions allow us to project the

data onto a very high�dimensional feature space in which it may be separable

by a hyper�plane� This has the side e	ect of also giving the model a very high

capacity which increases the structural risk� Fortunately we may control this
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capacity by increasing the margin� thereby decreasing the structural risk� As

increasing the margin also decreases the capacity� we select the solution with

the maximum margin �see Figure ��� We may increase the margin further by

allowing errors in the training set� If a training error is made the classi�er

pays a penalty which is proportional to the extent of the error� The constant

of proportionality is often denoted by C� Di	erent solutions will then be

found depending on our choice of C �Figure ���

A common kernel choice is a radial basis function� This kernel is based

upon a Gaussian and requires the speci�cation of a width parameter �� The

width parameter and the error penalty� C� may be set through the use of a

validation set�

��� The naive Bayesian classi�er

For problems where the task is to minimise the probability of misclassi�ca�

tion� the naive Bayesian classi�er �NBC� provides a simple and clear method�

while still enabling impressive performance� The NBC is termed naive since

it makes use of a simplifying assumption that its observable variables� which

represent the pattern features� are conditionally independent given the class

variable� The classi�er can be viewed as a special form of a Bayesian net�

work �
��� in which all the edges are directed from the class variable to the
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observable variables �Figure ���

The NBC consists of a �nite set U � fX�� X�� � � � � Xm� Cg � fX� Cg

of random variables� where X�� � � � � Xm are the observable variables that

represent the features� and C is the class variable with K states� The NBC

assigns a test pattern x to the class Ck �k � 
� � � � � K� with the highest

posterior probability

P �Ckjx� � p�xjCk�P �Ck�

p�x�
� p�X � xjCk�P �Ck� �

mY
i��

p�Xi � xijCk�P �Ck�

�
��

where p�xjCk� is the class�conditional probability density� P �Ck� is the prior

probability for class Ck� p�x�� the unconditional density� normalises the pos�

terior probability such that
P

k P �Ckjx� � 
� X � x represents the event

that X� � x� � X� � x� � � � � � Xm � xm and
Qm

i�� p�Xi � xijCk� is the

likelihood for x� To derive this equation� we have omitted p�x� which is com�

mon to all the states of the class variable and used the NBC independence

assumption�

Both P �Ck� and p�xjCk� can be estimated from the data� P �Ck� is the

relative frequency of patterns belonging to Ck out of all the patterns in the

data� The data can also be used to estimate P �xjCk� � the one�dimensional

class�conditional probability for discrete variables and p�xjCk� � the one�

dimensional class�conditional probability density for continuous variables�
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Modelling of probabilities is given by the sample frequency for each value of

the variable �that is the number of times the value is observed divided by

the total number of observations�� Densities are estimated using di	erent

techniques� for example� single density estimation �a parametric method��

kernel density estimation �a non�parametric method� or a Gaussian mixture

model �a semi�parametric method� ����

It has been found �
�� that kernel density estimation �KDE� of the class�

conditional probability densities of the FISH data is more accurate than the

other two estimation methods� We model densities for each class Ck and ob�

servable variable Xm using a �nite number of data points xn� n � 
� � � � � Nk�

where Nk is the number of training patterns in class Ck� KDE models the

one�dimensional class�conditional density as a linear combination of kernel

�usually Gaussian� functions

p�xjCk� �



Nk

NkX
n��




���h�����
exp

�
�k x� xn k�

�h�

�
�
��

with width h centred around each of the training data points xn of class Ck�

KDE� as other non�parametric methods� models non�normal distributed

data more accurately than parametric techniques but at the cost of storage

and computational complexities� as the number of variables in the model

grows linearly with the number of training data points�
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� The experimental study

Before beginning the experiments� we established a database of ��� FISH

images� which were captured from �ve slides� Following nucleus and signal

segmentation� ��
�� objects were identi�ed as potential signals and features

were measured for them� Based on labels provided by expert inspection �see

below�� 
�
�� of the signals were considered as �reals
 �among them ��
 were

red� and 
���� as �artifacts
 �among them 
���� were red��

Experiments to compare the accuracy of the four classi�cation techniques

on signals represented by the twelve features of Section ��� are conducted�

The normalised �N��� 
�� signal features are classi�ed in the �rst experiment

into their colour � red or green� and in the second experiment as real or

artifact� Therefore� the input and output spaces in both the experiments are

twelve and one�dimensional� respectively� Labels for the patterns� as belong�

ing to each of the classes� are needed to train and evaluate the classi�ers� and

they are obtained by an expert cytogeneticist using a custom�built graphical

environment for labelling FISH images �
���

The NN classi�er is a two�layer perceptron trained by the scaled conju�

gate gradient algorithm ���� Classi�cation is based on the approximation

of the multi�layer perceptron �MLP� outputs to the posterior probabilities

for the classes� The two networks� colour NN and real NN used in the two
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experiments di	er in the number of hidden units �H�� To achieve the highest

generalisation capability� this number is determined using a validation set�

This set also insures that no over�training is performed during the ��� epochs

of the training session� Finally� the classi�er accuracy is averaged for each

network over three random initialisations�

For the Bayesian neural network �BNN�� the weights were split into four

groups� the input to hidden weights� the hidden to output weights� the hidden

layer biases and the output layer bias� A hyper�parameter � was associated

with each group� For the output layer bias the hyper�parameter was �xed at


� 
���� The hyper�parameters for the other three groups were treated in a

Bayesian manner� A gamma prior was speci�ed across ��

p��� �
ab�a�� exp��b��

��a�
� �
��

For the input to hidden layer weights� the hidden layer biases and the hidden

to output layer biases the parameter a was taken to be ���� and the parameter

b was taken to be ����� 
���� ����� 
��� and ���� 
��� respectively� These

values provide very broad hyper�priors� and were used in both the colour

classi�cation and the real�artifact classi�cation� Two hundred samples were

drawn from the posterior distribution using hybrid Monte�Carlo sampling

�we used the implementation of Neal ������ The last 
�� samples were used

for making predications on the test set� Since a prediction for a test pattern
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is the integral �average� network prediction over all the models considered

under the prior �Equation ��� there is no need for validation� any necessary

model selection takes place through the Bayesian framework�

For the support vector machine� two parameters needed to be set using

a validation set� We considered models with an error penalty� C� of 
� 
��


�� and 
���� Using the radial basis function kernel� we explored widths�

�� of �� 
�� ��� 
��� ��� and 
��� �we used the SVM light implementation of

Joachims ��
��� These ranges of parameters provide a satisfactory environ�

ment to test the FISH data�

By de�ning a two�class classi�cation task and setting the feature set to

include all the twelve features� we also determine the NBC structure� If we

select the class and observable variables of the NBC to represent these classes

and features� respectively� we can employ the NBC for FISH signal classi�

�cation� Then� we only need to estimate the class�conditional probability

densities for each variable given each of the two states of the class variable

for both the colour NBC and real NBC� For the variable that represents

the area� which is the only discrete feature in the set� we model the class�

conditional probability using the feature sample frequency� Class�conditional

probability densities are modelled using KDE� Di	erent width parameters �h�

of the Gaussian kernels that are equal to T�
p
Nk �where Nk is the number of
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training data points in Ck and T is in the range ���
 to 
�� ���� are checked

on the validation set� This choice guarantees that the parameter shrinks

to zero as the number of instances goes to in�nity and density estimation

becomes increasingly local as the number of training points increases �����

The experiments to evaluate the classi�cation accuracy are conducted

using the hold out method� This method is applicable for large data sets

like the FISH data� which contains more than ��
�� data points� We parti�

tion the data randomly into training and test sets in proportion ��������

respectively� We then select a model � H� h or C and � for each of the clas�

si�ers � NN� NBC or SVM� respectively� using a validation set drawn from

the training set and a �ve�fold cross�validation �CV��� experiment� That is�

for each model evaluated� we divide the training set into �ve disjoint sets�

use four sets for training the classi�er and the remaining set for validation�

We repeat this procedure �ve times using all the di	erent possible validation

sets and average the classi�cation accuracy of the �ve experiments for that

model� The procedure is iterated for all the examined models� The model

that obtains the highest average classi�cation accuracy on the validation set

is selected� Then� we re�train the classi�er using the selected model and all

the training data points and evaluate it on the test set� This procedure is

repeated using the same partitions of the data for all the classi�ers �except
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for the BNN that needs no validation�� Figures � and � present results of

model selection experiments performed with the NN and NBC� respectively�

The classi�cation accuracy on the training and validation sets is plotted for

di	erent models of the two techniques when the patterns are classi�ed into

their colour �by colour NN or colour NBC� and as �reals
 and �artifacts
 �by

real NN or real NBC��

Finally� Table � compares the accuracy of each of the four techniques�

using its own selected model� in classifying test FISH signals� Signals are

discriminated by a classi�er of colour �into red or green� and a classi�er into

real or artifact� The comparison reveals that the BNN is the most accurate

technique in both cases� and the NN and SVM are comparable and second

best� The inferiority of the NBC compared with the other techniques is

attributed to the relatively large amount of dependency among features of

the set �e�g� average and maximum hue� total and average channel intensi�

ties�� This dependency violates the independence assumption of the NBC

and thereby decreases the classi�er accuracy� However� due to their higher

complexities� the other techniques can extract additional discriminating in�

formation from these features�
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� Conclusions

Highly�accurate signal classi�cation is required for precise dot counting in

FISH images that are captured without an auto�focusing microscope ���� To

cope with this requirement� we apply in this paper state�of�the�art classi�ca�

tion techniques � a neural network� Bayesian neural network� support vector

machine and naive Bayesian classi�er to the FISH data�

The four trainable classi�ers discriminate data based on di	erent ap�

proaches� NN training is based on maximum likelihood which is equivalent

to the minimisation of an error function� Since the lowest training error does

not necessarily represent the model that provides the best generalisation�

we are required to draw a validation set from the training set in order to

perform model selection� This complicates the experiment and a	ects the

accuracy of the NN� Instead of choosing a speci�c model� the BNN considers

a probability distribution function over model space� It uses the data and

Bayes
 theorem to convert an initial prior distribution for the models to a

posterior distribution� This posterior is then used as a weighting function for

the predictions made by the network to new inputs using the di	erent models

that are under the prior� The SVM provides an alternative approach to gen�

eralisation from that applied in the BNN� It uses capacity control through

the maximisation of the margin between the support vectors to improve gen�
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eralisation performance� however a validation set is still required to select

necessary parameters� The main di	erence between the three techniques

and the naive Bayesian classi�er is that the latter cannot model correlation

between inputs� since it assumes that the observable variables are indepen�

dent given the class variable� Kernel density estimation that models the

class�conditional densities for the NBC is not constrained to any particular

functional form�

The four techniques are found to be highly�accurate in classifying FISH

signals into their colour� as well as into real and artifact� Frameworks to

combine these classi�cations into one system are under investigation� The

slight di	erence in the performance of the BNN and the NN can be attributed

to the �nite �although large� number of samples leading to di	erent maximum

likelihood and maximum posterior solutions� The inferiority of the NBC

compared with the other techniques can be attributed to the assumption of

conditional independence and to the additional inherent feature extraction

stage performed by the other classi�ers� However� this inferiority should

be confronted against the simplicity o	ered by the NBC� Moreover� if the

features are known to be independent from each other� the simple NBC

should be our �rst choice�

Finally� this research can be extended by evaluating other classi�ers for

��



the same data and by comparing the classi�cation techniques on other arti�

�cial and real�world databases�
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Figure 
� An example of a FISH image used for dot counting
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Figure �� Two di	erent separating hyper�planes which classify all training

examples correctly� The diagram on the right shows the maximum margin�
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Figure �� Depending on the penalty assigned to errors� C� di	erent solutions

will be found� The left hand �gure is a low error penalty� the right hand

�gure is a high error penalty� Bold data points are within the margin� The

classi�er pays a penalty� C�i� for these data points
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Figure �� The naive Bayesian classi�er depicted as a Bayesian network in

which the observable variables �X��X�� � � � Xm� are conditionally indepen�

dent given the class variable �C��
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Number Feature Number Feature


 Area � Average Hue

� Eccentricity � Hue Texture

� Total Channel Intensity � Delta Hue

� Average Channel Intensity 
� Eig� 


� Texture 

 Eig� �

� Maximum Hue 
� Average Grey Intensity

Table 
� The set of features studied in the work� Texture indicates standard

deviation of the channel intensity ��� or hue ���� Eig� 
� � are abbrevia�

tions for the two coordinates of the eigenvector corresponding to the largest

eigenvalue of the red and green intensity components of the signal�

model Real�Artifact ��� Colour ���

Neural Network �NN� ���� ���


Bayesian Neural Network �BNN� ���� ����

Support Vector Machine �SVM� ���� ����

Naive Bayesian Classi�er �NBC� ���� ����

Table �� Classi�cation accuracy of the four techniques on the FISH test set�
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