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Abstract In this paper we consider a Bayesian interpretation of Fisher’s
discriminant. By relating Rayleigh’s coefficient to a likelihood function
and through the choice of a suitable prior we use Bayes’ rule to infer a
posterior distribution over projections. Through the use of a Gaussian
process prior we show the equivalence of our model to a regularised kernel
Fisher’s discriminant. A key advantage of our approach is the facility to
determine kernel parameters and the regularisation coefficient through
optimisation of the marginalised likelihood of the data.

1 Introduction

Data analysis typically requires a preprocessing stage to give a more parsimo-
nious representation of data, such preprocessing consists of selecting a group
of characteristic features according to an an optimality criterion. Tasks such as
data description or discrimination commonly rely on this preprocessing stage. For
example, Principal Component Analysis (PCA) describes data more efficiently
by projecting data onto the principal components and then by minimising the
reconstruction error, [4]. In contrast, Fisher’s discriminant separates classes of
data by selecting the features that maximise the ratio of projected class means
to projected intraclass variances, [1].

The intuition behind Fisher’s Linear discriminant (FLD) consists of looking
for a direction of discrimination w such that, when a set of training samples are
projected on to it, the class centres are far apart while the spread within each
class is small consequently producing a small overlap between classes [16]. This
is done by maximising a cost function known as Rayleigh’s coefficient, J (w).
Kernel Fisher’s discriminant (KFD) is a nonlinearisation that follows the same
principle but in a possibly high-dimensional feature space F. In this case, the
algorithm is reformulated in terms of J (), where & € F is the new direction
of discrimination. The theory of reproducing kernels in a Hilbert space gives the
relation between both vectors w and «, [16]. In either case, the objective is to
determine the most ‘plausible’ direction according to the optimality criterion, J.



Kernel Fisher’s discriminant has been applied successfully to classification
problems [11] and more recently, due to interpretation of its structure, it has
been formulated as an optimisation problem that leads to a special form of re-
gression [12]. KFD shares many of the virtues of other kernel based algorithms:
an appealing interpretation of a kernel as a mapping of an input to a high dimen-
sional space and a good performance in real life applications, among the most
important. However, KFD also suffers from some of the deficiencies of kernelised
algorithms: the solution will typically include a regularisation coefficient to limit
model complexity and parameter estimation will rely on some form of cross vali-
dation. The former introduces an extra parameter that must be estimated while
the latter makes parameter specification a lengthy process.

In this paper we introduce a novel probabilistic interpretation of Fisher’s
discriminant. The probabilistic model is outlined in Section 2 along with a brief
review of the existing literature on FLD. We build up over this model in Sec-
tion 3 by first applying priors over the direction of discrimination to develop a
Bayesian Fisher discriminant. In later sections, we show that the introduction
of a Gaussian Process prior renders the model equivalent to a regularised KFD.
Section 4 details an algorithm for estimating the parameters of the model (ker-
nel and regularisation coeflicient) by optimising the marginal log likelihood. We
present, the results of our approach by applying it on toy data and by classify-
ing standard datasets from several repositories in Section 5. Finally we address
future directions of our work.

2 Probabilistic Interpretation

Given a set of training data (X,t) = { (x(,t;)|i =1... N}, standard linear
regression consists on specifying a vector of parameters w that best explains the
relation ¢; = f (x(i);w) + €. The noise € is commonly assumed to be additive
Gaussian noise N (0,,8’1) ! with precision 8 and the function is commonly
specified as f; = wTx(). Two common methods to estimate the vector of weights
are Maximum Likelihood (ML) and Bayesian inference. Maximum Likelihood
approaches the problem from an optimisation perspective and yields a point
estimate W, whereas a Bayesian approach gives the probability distribution over
the w. Standard regression can be converted into a classification task if all the
targets t; are encoded as categorical variables, e.g. t; € {0, 1}.

In this section, we propose a likelihood function closely related to the linear
regression model just described but with noise arising from a mixture of two
Gaussian distributions with equal variance. We will argue that maximisation of
this likelihood renders an estimate equivalent up to a constant of proportion-
ality to that produced from maximising Rayleigh’s coefficient. We will use this
probabilistic model as a basis for later sections.

! We use the notation N (x|m,X) to indicate a multivariate Gaussian distribution
over x with mean m and covariance X.



2.1 Fisher’s discriminant Analysis

Fisher’s discriminant analysis involves seeking a direction or feature w € R?*!
for which separation in a data set will be maximised. The discriminant looks to
provide a good separation between the projected class means while achieving a
small variance around those projections. The hope is that it will be possible to
distinguish the different classes from these projections with small error. We first
introduce some notation that will help us describe this idea in a mathematical
way. Let a set of training samples (X,y) = {x(i), y(® | i=1... N} be split into

two groups X, = {x,(,i) i= 1...Nq} for ¢ € {0, 1} such that X = X, U X;.

Furthermore, consider the sample mean for each class to be m,; = N;l Z x,(,l)
iEN,

and the class label vectors y; =y and yo = 1 —y, where y € {0, 1}N and 1 is
a vector filled with ones. Then by considering a linear function f = w'x that
projects all data onto the direction of discrimination, Rayleigh’s criterion can be
written as the ratio )

J= (/1’12 NOQ) , (1)

o1 + og
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where the parameters p, = Nq_lemq and o] = Z (WTX((JZ) - ,uq) are the
iEN,

mean and variance of the projected data [3, 1]. Making explicit the dependence

of J on w gives

wl X pw

J(w) = (2)

wly,w’
with
Yp = (m; —myp) (m; — mO)T and

N T
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ge{0,1} =1

The between covariance matrix X'p measures separation between projected means
and the intraclass covariance X, gives an estimation of the separation around
those projections. The formulation in (2) makes evident that this problem uniquely
involves the vector w. Moreover it shows that a solution can be found by solv-
ing a generalised eigenproblem of the form Ypw = AX,w, with A being the
eigenvalues of X1 ¥'p. An alternative solution is given by w oc X! (mg — my).
A more detailed analysis of Fisher’s discriminant allows it to be cast as a
quadratic programming problem. We notice first that Y'p has rank one, such
that the numerator of (2) can be held constant. As in a discrimination task the
magnitude of the solution w is not relevant, fixing the numerator to an arbitrary
scalar d and minimising w’ X,,w will yield an equivalent result. Based on these
observations, Mika [12, 10] has shown that Fisher’s discriminant can be cast in
a more general framework by considering it a convex, quadratic optimisation
problem. In this case, the variance of the projections is minimised while the



distance between projected means is kept at an arbitrary value, say po — p1 = d.
In other words, the coefficient becomes J = d* /o7 + 03. We will also make
use of this ‘average distance’ constraint in subsequent sections to reformulate
Fisher’s discriminant.

2.2 A Likelihood Model

Several sources in the literature have drawn relationships between FLD analysis
and least squares regression. It is interesting to see the similarities between min-
imising the class separation in the output space, just as in FLD and setting the
outputs as close as possible to some target, as in least squares. More specifically,
[1, 3] have showed that FLD arises as a special case of regression in which targets
have been encoded in a particular way. From this formulation it has also been
possible to draw connections between Fisher’s discriminant and the so called
least-squares Support Vector Machine (Is-SVM) [17], with the latter being an
SVM that implements a particular loss function.

In this section, we encode the targets in a similar way to that of [3, 1] in
order to approach FLD from a probabilistic point of view. We first introduce a
likelihood function that explains why some projected dataf = { f;|i =1,..., N}
is clustered around the two class centers c,. In order to do so, we use two Gaussian
distributions with unique precision that are centered at ¢, such that each one
of them measures the amount of separation between the projections and the
class centers. Despite not being a very appealing model at first sight, we will
demonstrate that optimising the locations ¢, will give similar results to that
of Fisher’s discriminant, which is based on the rather complementary view of
optimising the location of each data projection f;.

Let the target vectors be encoded as t; = ¢4y, and also let the precision of
each Gaussian be . Then the distribution over the targets can be expressed by

p(tlf,ﬁl)Z(f%eXp IS (4 D) ding(yg) (b - D) . (3)

2
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We know that this is not a probability distribution in strict sense as it is not
normalisable, i.e. t is a discrete variable. Nonetheless, we ‘relax’ this assumption
and take it to be a proper distribution in order to be able to build upon our
model. We will see that sensible results can be obtained despite this relaxation
in Section 5. Moreover, in future work, due to this assumption we think it will
be possible to construct a noise model over the targets that is similar to [6].

Equation (3) can be re-written in terms of the parameters of the model, ¢y,
¢1 and B (Appendix A)
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In a typical Maximum likelihood setting, we look to maximise L in order to
obtain the most probable set of parameters. Differentiating the log of (4) with
respect to ¢, and equating the corresponding gradient to zero gives

L pe_
quﬁquf:/j,q, (5)
which is the sample mean of each class. In the remaining parts of this paper we
will be using this definition of é,. A solution for the parameter 3 is found by
applying the same procedure, such that

N
25:1 Yn (€1 — fn)2 + 25:1 (1—=yn)(co— fn)2

So far we have argued that a discriminant of some kind can be obtained by
placing Gaussians with equal precisions around the projected data. The solutions
obtained tell that the most probable centers are located at the sample means and
that the noise level is inversely proportional to the separation of the class centers
from each projection. However, it is still necessary to demonstrate that this
procedure gives a solution identical to that of Fisher’s discriminant mentioned
at the end of section 2.1. In order to do so, we first back substitute the values
¢q into (6) and recall the definition of o7, such that the resulting expression is

B = (6)

N N

p(f) = (7)

O’% + O'g '
We notice that equation (7) is proportional to the constrained definition of
Fisher’s discriminant. Therefore, under our proposed framework, Rayleigh’s co-
efficient can be written exclusively in terms of the noise level 3, that is

_ B
J= 8)

A solution to FLD can then be found not only by solving a generalised eigen-
problem but also by adjusting the precision of the two Gaussians and by setting
the locations of their centers. We can also express our proposed likelihood in
terms of 3 by substituting the values of ¢, and A into 4) , ie.

B BN/2 N
As L (f) increases with 3 just as J does, we conclude that maximising the like-
lihood in (4) is equivalent to maximising Rayleigh’s quotient.
2.3 Optimising w

In the previous section we showed that FLD analysis is equivalent to maximising
a particular likelihood. Now, by substituting (5) into (4) and making f, =



wTx("we will express the likelihood in terms of a linear model. Maximisation
of the resulting expression with respect to w will recover the standard solution
for Fisher’s discriminant. First we recall that the average projected class means
must still lie apart at a distance d = pup — 1. This condition is imposed as a
constraint on the optimisation in the form of a Lagrange multiplier A, hence the
resulting constrained log-likelihood takes the form

CANARS () 2
In <%> -3 Ll Yn (WTX - WTml) 9)

N
+ Z (1—yn) (WTX(n) - meO)2
n=1

A(w,3,)) =

+>\[WT(m0—m1)—d].

The solution for w can then be found as
w o Yot (mg —my), (10)

where the equivalence with Fisher’s discriminant is evident. Letting Am = mg —
m;, the constant of proportionality is given by d (AmTZ'JlAm)fl which in
turn is dependent on the selected value of d. This completes our discussion
for a probabilistic interpretation for Fisher’s discriminant. We have formulated
FLD in terms of a likelihood function (2.2) that depends on the projected class
centers and on some noise level 37!. Furthermore, by exploiting the structure of
FLD, we showed that maximisation of this model is equivalent to optimisation
of Rayleigh’s coefficient. Lastly, expressing the proposed likelihood in terms of
a linear model and optimising it with respect to w gives an equivalent result to
Fisher’s discriminant. We can therefore complement the model and build on it
by introducing priors over the direction of discrimination.

3 Bayesian Formulation

First let’s reconsider the example of linear regression, i.e. modelling of a function
f (X;w) by estimating the parameters w. In the Bayesian approach, it is cus-
tomary to assume the observations to have been corrupted by Gaussian noise:
x ~ N (0,37'I) and to assume a Gaussian prior over the weights: w ~ N (0, I),
as well. Section 2.2 approached this problem by maximising a likelihood associ-
ated to FLD. This section will follow suit by expressing the likelihood in terms
of w in order to infer its probability distribution. The distribution mean will
have a value proportional to the standard solution of Fisher’s discriminant. A
probabilistic approach of this kind will offer some intrinsic advantages: the abil-
ity to compute variances of the projected points and the possibility to introduce
Gaussian Process priors in a natural way. Nonetheless, in order to obtain a sen-
sible solution, it will be necessary to incorporate the ‘distance constraint’ to the
inference process.



3.1 Weight space formulation

So far we have found the most probable direction w from a ML perspective, (10).
Now what we seek is a distribution over projections which is obtained through
combining our proposed likelihood with a prior distribution. Hence, the posterior
probability over the weights is found by applying Bayes’ rule:

p(tlw,3,X,y)p(w)
p(t|3,X,y)

p(w|t,5,X,y) = (11)

Assuming the distribution p (t| w, 8,X) to be given by (2.2) and the prior over
the weights w ~ NV (w|0, Afl) will yield in a posterior of the form

B >
p(W|t,B,X) Ocexp{—§ (]_ _yn) (WTX(n) _CO)
n=1
N ) 1
_g nz::lyn (wa(n) - 01) - inAw} , (12)

where we recognise in this formulation the probabilistic analogy of the 1s-SVM
described in [17]. In contrast with the standard Support Vector Machine of
[18], least-squares SVM’s implement a squares error cost function in order to
obtain a solution in the feature space. In addition, they have been linked to ridge
regression classification for binary targets and to a regularised form of Fisher’s
discriminant analysis, the only difference between FLD and 1s-SVM being the
encoding of the targets. In our case, the posterior (12) is already implementing
a version of Fisher’s discriminant with a regularisation term arising naturally
from the prior over w.

In the subsequent discussion we will drop out the dependence of the posterior
from the centers ¢, by substituting each value for their most probable one, i.e.
¢, = wlm,. With some mathematical manipulation we will be able to express
the posterior solely in terms of the direction of discrimination,

p(w|y,X) =N (w|0,B"}), (13)

1 1
with B=8XTLX + A and L=1— —y,y7 — —yoyl.
N No

As it was mentioned previously, so far the model constructed has not consid-
ered what we have called the average distance constraint. Avoiding its inclusion
leads to a symmetry problem which causes the expected value of the posterior to
be 0. This is better explained by considering that both solutions w and —w are
valid and hence in average they ‘nullify’ each other. In a maximum likelihood
scenario, as we have already shown, a constrained optimisation might take place
by the inclusion of a Lagrange multiplier, just as it was showed before. However
Bayesian models must deal with every parameter involved in terms of probability



distributions, hence we introduce the constraint through a function that places
all of its mass in a single point, e.g.

exp (—1 (d— WTAm)z) , (14)

p(d|w,mg,m;) = lim i 5

1

2
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which forces d = pp — 1 when the taking limit v — oco. The combination of (13)

and (14) will lead to a posterior distribution over w that depends on v and on
the observed value d. Taking the limit (Appendix B) gives another Gaussian

p(W|Y;X7d) = N(W|W )EW)

with
B dB~'Am
W= ———————
AmTB-1Am
and
—1 Th-1
5, —B_ B"'AmAm'B

AmTB-1Am

As would be expected, when an improper prior is used (i.e. A = lim,_, al),
the mean of this posterior coincides with the maximum likelihood solution given
in Section 2.3. Thus our Bayesian discriminant provides a regularised form of the
standard Fisher’s discriminant where regularisation is provided by the matrix A.
Also note that Y is a positive semidefinite matrix and therefore not invertible.
This is a consequence of the fact that any vector w which does not satisfy the
constraint imposed by the distribution p (d|w, mp, m;) has a posterior proba-
bility of zero. Nevertheless, variances associated with output points can still be
computed by applying

xTB 1 AmAmMmTB1x
AmTB-!Am ’

var (wix) =x"B 'x — (15)
which will be zero if the point x is on the direction of Am.

The Bayesian approach we have outlined leads to a posterior distribution over
projections which can be used to compute expected outputs and their associated
variances for any given input x. However the limitation imposed by applying a
linear model is a strong one. There is an extensive amount of literature explaining
why linear models are not always convenient. A common solution is to use a set
of nonlinear basis functions such that the new function is linear in the parameters
but nonlinear in the input space f (x) = w’ ¢ (x), [15, 1] . However the problem
is shifted to specifying which and what number of basis functions to use. In the
next section we shall consider the alternative approach of placing a prior directly
over the function f, such that we will be working with a possibly infinite amount
of basis functions. This approach will lead to a regularised version of the kernel
Fisher discriminant. The probabilistic interpretation of this model will also lead
to a principled approach to the selection of kernel parameters.



3.2 Gaussian Process Formulation

Gaussian Processes (GP’s) are sub-branch of stochastic processes specified by
giving the probability distribution over a finite set of observations {fi, fa,...,
fn}. The specification is given only in terms of their mean vector and covariance
matrix. For our convenience, GP’s can also be seen as an upper level general-
isation of Bayesian regression. In linear regression, a function f(x) is learned
by inferring the distribution of a random variable w and then by applying the
deterministic relation f (x) = w’ ¢ (x). Instead, in a Gaussian process [13, 19] a
prior is placed directly over the function such that a posterior distribution over
it can be inferred. Although there are many GP’s with an equivalent ‘weight
space’ prior, there exists a large class of them for which no finite dimensional
expansion exists. In this regard, a covariance function (or kernel) measures a
priori the expected correlation between any two pair of points x(™ and x("™ in
the training set. For example, in a function parameterised as

fn= WT¢ (X(n)) )

with a prior over w specified by a spherical Gaussian with zero mean, p (w) =
N (w]0,a7'T), the implied correlation between two points is

E[fufmlw] = a6 (x<n>)T o (xm).

In other words, if the feature vector becomes of infinite length the correlation
between the two points will lead to a Mercer kernel [16]. However, under these
circumstances it no longer makes sense to talk about a prior over the vector w
which would also be infinite. Instead priors over instantiations of the functions
are considered.

Therefore, in this subsection we look to reformulate the proposed Bayesian
scheme in terms solely of the projected data f. In order to do so, we recall
the likelihood we previously proposed (3). Substituting the targets in terms of
the class centers, i.e. t; = c¢;y, and furthermore, substituting the values of the
centers by its most probable ones, ¢, will lead to a likelihood that depends only
on the projected values f. Some algebraic manipulation (shown in Appendix A)
allows us to rewrite the likelihood as

P (t|f,ﬂ_1) o exp (—ngLf> . (16)

We follow again the analogy with Bayesian regression presented at the begin-
ning of section (2) but this time from a Gaussian process perspective. In this
paradigm, we are interested in making predictions over a new observed value f,
given a set of observations f. In order to do so, we introduce a GP prior formed

by the augmented vector £, = [T f*]T and an increased kernel K, such that

1 _
p(f}y) ox exp <—§fIK+1f+> . (17)



The matrix K is of dimensions (n + 1) x (n + 1) and has been partitioned as

K k
K+: (ka*>7

with an n column vector k = {ky,|i =1... N} and scalar k.; the kernel func-
tion defined as kx = K (x«,%xx). Inclusion of the test point will enable the
model to make predictions outside the training set. The posterior distribution
p(fL]t,y,X) is readily obtained by combining (16) and (17).

In (3.1) we commented on the risks of learning with the model provided solely
with the posterior over w. The Gaussian process framework is no different in
this regard, the distance of the projected class means must still lie apart by a
fixed distance. We consider the alternative definition of projected class means

U = Fy;rf given in (5) and rewrite the distribution (14) in terms of f, such
q
that )
— i 2 Y (g eT Ac)2
p(d|f) = 7151010 o exp( 5 (d—f"Ay) ) ; (18)

with Ay = No_lyg — Nl_lyl. Incorporating the constraint (18) to the posterior
will give a distribution of the form p (f;|y,X,d). We now look to marginalise
the vector of observed projections f in order to obtain the posterior predictive
distribution. This marginalisation will once more lead to a distribution depen-
dent on «, which by taking the limit v — oo (Appendix C) will yield a Gaussian
of the form

p(f*ly,X,d)ZN(f*V*,Uf); (19)
with mean and variance
f. < dkT (KLK + 87'K) ' KAy, (20)
and )
o=k —k' (K+8'[K'+D!]) k, (21)
respectively.

The constant of proportionality of (20) and matrix D (21) are specified in
Appendix C .

It is interesting to see that the predictive mean is given by a linear combi-
nation of the observed labels, in this case expressed in terms of Ay. We notice
as well that the variance of the prediction is composed by two terms, one repre-
senting the observed training data and the other representing a variance purely
assigned to the test point. This results are then highly similar to those of typical
GP regression, [19, 8]. In the next section we show how this model is equivalent
to a regularised version of kernel Fisher ’s discriminant .

3.3 Equivalence to KFD

As mentioned before, kernel algorithms rely on expanding the vector w in the
N

span of the training samples, i.e. W = Zaid) (x(?), such that the projection of
i—1



a new test point can be written in terms of the inner product
f. = a'k. (22)

In the context of KFD, the vector v is recognised as the eigenvector with max-
imal eigenvalue that solves the problem posed by formulating Rayleigh’s coeffi-
cient in the feature space F. In other words, given

a’Ma
J = ——
(a) aTNa
with M = (pg — i) (g — )", N = KLK and r, = N7 'Ky,. The solution
can be computed by either solving a generalised eigenproblem or by taking

a o N7H (pg — py). (23)

We now resort to a definition of the projected means given in [16], and sub-
stitute it in the resulting mean of our model (20). Hence a comparison between
(20) and (22) leads to

aoc (N+F7K) (1o — ). (24)

We observe that this is a regularised version of the KFD solution (23). In fact
taking the limit 8 — oo will give an identical solution, see for example [16]. As
the rank of matrix N is (IV — 2), making it non invertible, [11] has suggested to
solve this deficiency by adding a regulariser (a multiple of the kernel or identity
matrix) which in our case is given by 37!'K.

In our formulation the regularisation term has arised naturally, moreover,
our idea of using a likelihood function leads the way to propose a principled
approach to estimate the values of the ‘regularisation’ coefficient as well as the
parameters of the kernel.

3.4 Interpreting 3

Section 2.2 was devoted to understand the similarities between the likelihood
we proposed and the maximisation of Rayleigh’s coefficient. More specifically,
we were able to determine that the problem simplifies to the point of adjusting
the noise level g if the averages of the projected class means lie apart at a fixed
distance. This intuition makes sense either for the likelihood proposed (4) and
in the constrained version of Rayleigh’s coefficient (8):

— Solving the ML problem in (2.2) involved estimating the location of the
centers of both distributions and adjusting the precision 8. Furthermore, it
was demonstrated that the most probable location of each center was fi,
the projected sample mean. Therefore by fixing d = g — p1 the number of
variables involved in the maximisation is reduced to one, 3.



— In a similar way, substituting the constraint making d = py — p1 into (1)
implies that maximisation of Rayleigh’s coefficient will only be a function
of the variance around each projected class mean. We can see then from

equation (6) that such variances are closely related to 3.

In order to understand better the physical significance of 3, we first rewrite the
Rayleigh’s coefficient derived under the maximum likelihood framework

_ b
=N

and we plot the generalisation error as shown in Figure 1.

B-l 2

f D
d
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Figure 1. Generalisation error as it relates to 8 and d. The shaded area gives the
generalisation error if the true densities conform to those given by the two Gaussians.

From this figure, we can see that for fixed d, the generalisation error will
—1/2 decreases. Furthermore, the maximum like-

decrease as 3 increases, i.e. as 3
lihood solution for the precision obtained in (6) allows us to think that 8 can be

modelled through Bayesian inference. If that is the case, placing a prior distri-
bution over this variance will be equivalent to placing a prior distribution over
Rayleigh’s coefficient and over the generalisation error. Consider, for example,
the case where d = 2 and the class priors are equal: if the data does truly map to
the mixture distribution with which we are modelling it, then the generalisation

error will be
1 1 153
Eeq = 5 — ierf< —> . (25)

2
If we then consider a gamma distribution as a prior,
a

P(8) = Frgg B exp (-b8),




then the MAP solution for 8 is (Appendix D),

N +2a—2

- 26
o 403 +2b (26)

ﬂMAP =

By setting a = b = 0.5 we indirectly obtain a uniform distribution over F, this
important special case leads to a new update equation of the form

N-1

—_— 27
a%—}-ag—l—l’ (27)

Bmap =

which can be viewed as a regularised version of (6). The prior can also be used
to bias 8 toward low or high generalisation errors if this is thought appropriate.

3.4.1 Other Special Cases Taking the limit as § — 0 makes the mean
prediction for f, and its variance take on a much simpler form,

fe=agk
where o
o d(yo —y1)
ag = - T N N y
(Yo —¥1) K(yo—31)
and

Uf:k*.

This result is remarkable for the absence of any requirement to invert the kernel
matrix, which greatly reduces the computational requirements of this algorithm.
Driving f to zero nullifies the influence of the likelihood, in other words all this
model is doing is placing a constraint on the distances between the means given
a prior distribution. It has already been pointed out (see e.g. [16]) that such a
constraint leads to the well known Parzen windows classifiers (sometimes known
as probabilistic neural networks) [3].

As we discussed in Section 3.3, taking the limit as § — oo leads to the
standard kernel Fisher’s discriminant. From Figure 1 it can be seen that an a
priori setting of 37! to zero is equivalent to assuming that we can achieve a
generalisation error of zero.

4 Optimising Kernel Parameters

One key advantage to interpreting the kernel Fisher ’s discriminant as a Gaussian
process is that it leads to a principled approach to determining the parameters
of the kernel, including the regularisation term. The approach taken is to opti-
mise the normalisation constant in (11), sometimes referred to as the marginal
likelihood. We look to optimise

L(0) =logp(t|X,y,5,0),



with respect to the parameters of our kernel, 8. Recall in Section 2.2 that we
optimised the likelihood with respect to the parameters ¢y and ¢; leading to a
new encoding of the targets

We back substituted these values in to the likelihood in order to demonstrate the
equivalence with maximisation of Rayleigh’s coefficient. Unfortunately, one side
effect of this process is to cause the target values to become dependent on the
inputs and the problem that arises now is that the targets will shift as the kernel
parameters are estimated. One solution could be to iterate between determining
to and t; and optimising the kernel parameters. This approach is simple, but
may be difficult to prove convergence properties. We therefore prefer to rely on
an expectation-maximisation (EM) algorithm [2] which finesses this issue and
for which convergence is proved.

4.1 EM Algorithm

Consider that the log likelihood can be written
(tIf,y,8) p(f|X,8)
p(flt,X,y,5,0)

It is straightforward to show through Jensen’s inequality that a lower bound on
the likelihood is given by

df.

L(o) = /p(flt,X,y,B,G) log ?

p(tif,y, 8)p(fIX,0)
q(f)

where ¢ (f) is assumed not to depend on 6. Clearly this lower bound is maximised
for ¢ (f) = p (f|t,X,y, 3,0) when the equality holds. We propose to use an EM
algorithm and alternate between optimising the bound with respect to ¢ (f) as
E-step and optimising (28) with respect to 8 as M-step. Since the expectation
step makes (28) equal to the log-likelihood and the maximisation step optimises
this bound, the two steps in tandem are guaranteed to find a (local) maximum
for L (#). The E-step in our model simply involves setting

L(0) > /q(f) log df, (28)

q (f) x exp <—%fT21f> ,
where )
Y= (K '+4L) (29)
and the M-step requires maximisation of
£(6) = (logp (£X, 0)), ¢, - (30)

with respect to 8 which can be done with gradient based methods. The notation
() (s indicates an expectation under the distribution p (z). Note that for the



updates of the kernel parameters, we have chosen not to apply the constraint on
the class means imposed by (18), i.e. the kernel we learn is valid for any given
d. This is reasonable as the quality of the classification should not be dependent
on a given value for d (which can be chosen arbitrarily).

4.1.1 Updating 8 In the context of the proposed EM updates, it is clear
that adjusting the kernel parameters at every iteration will require setting 3 in
some way. To develop an update we again make use of the lower bound and the
average distance constraint, as the posterior distribution requires it. We must
remember that inclusion of the constraint is necessary as the value 8 depends
on d. This leads to an update equation

A N
== 31
f o2 + o} (31)

where 67 = Yy, <(fn - ,u1)2> and the expectation (-) is computed under the

predictive distribution for the nth training point (19). An expression for 3 is
given in a similar way.

As discussed in Section 3.4 we can also seek a MAP solution and in our
experiments we preferred the update

F _ N-1
VAP T 5 5z 1

which arises from a uniform prior over the expected generalisation error. Hence

the update of 3 can be combined with the EM algorithm given above and iterated

until convergence of § and/or L (6) as outlined in Algorithm 1.

Algorithm 1 A possible ordering of the updates.

Select Convergence tolerances 7g and ng.
Set Initial values @ and B
Require data-set X, y.
while change in 8 < ng and change in 8 < n¢ do
— Compute kernel matrix K using 6.
— Update X using (29).
— Use scale conjugate gradients to maximise (30) with respect to 6.
— Update 3 using (31).
end

5 Experiments

One generally accepted way of determining kernel parameters is to select a range
of possible values and cross validate them. This works well when the kernel is



only dependent on one or two parameters but if there are more an alternative
approach is required. As it has been suggested, our EM approach gives a good
theoretical grounding to perform such estimation. In practice, however, we know
that the optimisation routine might get stuck into local minima close to the point
of initialisation. To deal with this in a principled way, we first trained our model
with different sets of initial parameters and then selected the model with the
highest marginal likelihood. This process will be exemplified with experiments
done on toy and real data sets.

5.1 Toy data

We constructed three artificial experiments (ard, bumpy and overlap) and
used the two-spiral data set from [5] to demonstrate our approach. For each of
the experiments we used the update orderings outlined in Algorithm 1. The data
sets were designed to test different facets of the following kernel

0
k (x;,%;) = 601 exp (-5 (xi —%;)" O (xi — x]-)> +03x] O + 04 + 0505, (32)

where J;; is the Kronecker delta and the matrix © = diag ([6s - . . O+ k]), with K
being the dimension of x. The kernel has three main components: an RBF part
(61,02, ©), alinear part (03, ©), a bias term (f3) and white noise (65).

We decided to train each data set three different times by keeping all param-
eters initialised to 1, except 2 which was set to (1, 10, 100) for ard, bumpy
and overlap and (1, 500, 5000) for two-spiral. We then selected the model that
produced the highest marginal likelihood. In all our simulations, we let the al-
gorithm converge whenever the change in a 3 update was less than 1 x 107 or
the change in @ was smaller than 1 x 1075. The selected models for each set are
summarised in Figure 2.

Experiment A: only one input direction is significant in determining class,
but the data is not linearly separable. Experiment B: the spiral data is highly
non-linear and requires information from both inputs. Experiment C: the two
crossed Gaussian distributions require a non linear decision boundary. Experi-
ment D: the overlapping Gaussians only require a linear decision boundary and
information from one input direction. The inferred decision boundaries are also
given in Figure 2. The learnt kernel parameters are summarised in Table 1. For
each experiment B was initialised to 1. In all cases we obtained arguably good
solutions. Irrelevant directions were down-weighted and the relative use of non-
linear vs linear decision boundaries (as indicated by the ratio of 8 to 63) was as
expected.

Figure 3 below shows an example of the result of training two-spiral with
a bad initialisation. Notice the value of the marginal likelihood in this case is
smaller to the one presented in Figure 2. The kernel parameters determined by
the algorithm for the four experiments are given in Table 1.
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Figure 2. Results from the four experiments. Two classes are shown as pluses and
circles. The decision boundary is given by the solid line. Dotted lines indicate points at
1/4 of the distance (as measured in the projected space) from the decision boundary
to the class mean. Log-likelihood value appears enclosed by brackets. .

6 Benchmark data sets

In order to evaluate the performance of our approach, we performed a series
of experiments with well known data sets. We used the synthetic set banana
provided by Gunnar Rétsch 2 and 10 other real world data sets from the UCI,
DELVE and STATLOG benchmark repositories®>. Whenever applicable, the
experimental setup was chosen according to [14] and [11], where (among others)
the compared methods were: RBF, a single RBF classifier; AB(r), regularised
AdaBoost; SVM, a Support Vector Machine (Gaussian kernel) and KFD, the

? Data sets can be obtained from at http://mlg.anu.edu.au/ raetsch. Due to compu-
tational reasons, in this work we did not implement our approach on the data sets
Flare-Solar, Image and Splice because they exceeded 1000 training points.

% The breast cancer domain was obtained from the University Medical Center, In-
stitute of Oncology, Ljubljana, Yugoslavia. Thanks to M. Zwitter and M. Soklic for
the data.



Model no.1

1 + + +
+ o,
+ +
+ + +
+ 7t * 4 +
0.5¢ + + +
+ + +
+ + ++t+4
+ I 4 + +
+ + r ++ +
OW%‘\’\
+ * ¥ +
+
+ + ¥ +
*i +7 +
-05 + + 44+ .
+ L+
e o4+t
—1F
-1 -05 0 05 1

Figure 3. The solution for the spiral data with a poor initialisation 6> = 1 . Associated
log-likelihood L = 605.93.

Experiment|f; x 107° 0> 03] 64|05 x 107%| (85 x 107", B7 x 107?)
A 4.74] 589.11]1.89 x 10~°[2.74 4.40] 1.62 3.76
B 9.32[9230.00[1.88 x 10 7[2.75 8.10[323.00 2.92
C 2.05| 29.68]4.32 x 10 "[2.75 5.10[ 0.02 11.91
D 0.19] 13.39]1.10 x 107%]2.75 0.99 2.88 2.90

Table 1. The parameters learnt for the different experiments. Some columns are scaled
to ease comparisons, scaling factors are given in the top row.

kernel Fisher discriminant (in [11]). Data was processed to have binary classes
and then partitioned into 100 test and training sets, see [14] for further details.
As mentioned earlier, non Bayesian schemes resort to cross-validation to estimate
model parameters. In all these methods, the parameters required were estimated
by running 5-fold cross validation on the first 5 realizations of the training sets.
The selected parameters were then chosen as the median over these 5 estimates.

In our first approach, denoted by BFD, we used 5 different initialisations
of the ‘inverse width’ part of an RBF kernel to train our models. Following
the previous scheme, we trained on the first 5 realisations of each data set and
computed their corresponding marginal loglikelihood. In this way, a matrix of
5 x 5 elements was obtained with each element containing a marginal likelihood.
Furthermore, for each realisation we selected the model with highest associated
L (0) (a vector of length 5 was formed). The parameters were selected from the
median of the inverse widths associated to each likelihood in the vector that was
described. Under this framework the regularisation § was considered a parameter
as well.

The experiments with BFD show, in general, comparable results with the
previous approaches. However, we can take a step further and take advan-
tage of some of the features provided by the Bayesian framework of inference.
More specifically, we tested the Automatic Relevance Determination feature that



might be obtained from selecting an appropriate prior [9]. In order to do it, we
performed the same classification experiments but with a kernel of the form
described in (32). A kernel of this nature would have been very difficult to im-
plement with the cross validated methods as there are too many parameters
to explore. We present, the results of these new experiments under the column
BFDARD in Table 2. All experiments were trained on the 5 realisations of data
and with 65 initialised to one. The algorithm was stopped when the change in
B < 1x10~* and/or a change in L () < 1 x 10~%. We observe a substantial im-
provement for some of the data sets, compared with BFD, implying that ARD
prior can help.

The selection of an ‘ARD’ kernel (32) implies that irrelevant features are
down weighted and effectively pruned out of the model. This effect could be
visualised on some of the examples on the synthetic data sets and we would
expect to see it to some extent on the experiments with real data. Table (3)
shows the plots of the values of the weight vector @ for Heart and Thyroid. In
the first case, the attributes 1, 4, 5 and 6 were pruned out of the discrimination
process; whereas in the second case the analogous effect takes place for the
features: 1, 3 and 5 were removed.

Dataset RBF AB(r) SVM KFD BFD |BFDARD
Banana ||10.8 £0.6{10.9 £ 0.4|11.5£0.7 (10.8 +£0.5[11.5+0.7{12.4+0.9
B. Cancer|[27.6 £4.7| 26.5 +4.5 | 26.0 £ 4.7 |25.8 £ /.6|28.8 £4.4|24.1 + 4.6
Diabetes (|24.3 £1.9/23.8 1.8 |23.5 £1.7|23.2+1.6(27.24+24(24.7+1.8
German (|24.7 £2.4/24.3+2.1 (23.6 £ 2.1|23.7+£2.2(23.4+0.2(25.6 +2.3
Heart |[17.6 £3.3|16.5+3.5|16.0£3.3|16.1 +3.4 (16.1 £3.3|15.9+3.5
Ringnorm| 1.7+0.2 1.6 £ 0.1 | 1.7£0.1 |1.5+0.1 | 1.84+0.4 | 1.7£0.2
Thyroid (4.5 +2.1] 46+22 | 48+22 | 42+21|54+24|46+23
Titanic ||23.3 £1.3|22.6 £1.2|22.4+1.0(23.2+2.0|24.7+2.0(22.44+0.3
Twonorm || 29+0.3 | 2.7+0.2 | 3.0£02 [|2.6+0.2|24£0.1(2.6+0.1
Waveform|[10.7 £ 1.1 9.8+ 08 [ 9.9+ 0.4 [ 9.9+ 0.4 |15.0+0.8|14.2+0.3

Table 2. Results of experiments with real data sets. BFD refers to our model applied
with a standard one dimensional RBF kernel, whereas BFDARD indicates an ARD-
RBF kernel.

7 Conclusions and future work

We have presented a Bayesian approach to discriminant analysis that corre-
sponds to kernel Fisher’s discriminant. Regularisation of the discriminant arises
naturally in the Bayesian approach and through maximising the marginal like-
lihood we are able to determine kernel parameters. This paper has established
the theoretical foundations of the approach and has shown that for a range of
simple toy problems the methodology does discover sensible kernel parameters.
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Table 3. Plots of the weights that were learnt for Heart and Diabetes data sets. We
used the kernel specified in (32).

The optimisation is only guaranteed to find local minimum and therefore the
quality of the solution can be sensitive to the initialisation. We performed ex-
periments on real world data obtaining results which are competitive with the
state of the art, moreover, we were able to do some relevance determination on
the data set features.

Future directions of this work will be centered on sparsifying the kernel ma-
trix. We intend to adapt the Informative Vector Machine model to our framework
[7]- This should make larger data sets practical. At present, we are restricted by
the O (N3) complexity associated with inverting the kernel matrix. Another di-
rection of research will consist of allowing the model to learn in the presence of
label noise building on work in [6].
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A Expressing the likelihood in terms of f

Substituting the values t, = ¢y, into (3) and with some straightforward algebra
we can obtain equation (4),

N/2 N N
f‘,ﬂ_l)Z(ﬂ)N/2 exp{—g [Zyn(q 2_: 1—yn)( fn)Q]}.
) ) (33)

A further substitution of the most probable values for the locations ¢, and con-
sidering that y, = y2 will lead into the desired expression. Working with the
argument of the exponential function in (33) will lead to

Zyn( - fn> +Z 1= ya) (lyof fn>2

=7 — -y fy — 5ys €70

p(t

= fTLf.

B Weight space approach

In order to derive the distribution of w under the constraint d, we first realise
that the combination of p (w ~1) and p (d|w, mg, m; ) yields

P(wly, X, d,7) = lim N (yd¥, Am, $7) (34)

with ¥, = B+yAmAmT. Inversion of ¥, through Morrison-Woodbury formula
will allow to take the limit, such as is shown below

B l'AmAmMmTB-!

I =B - ,
v v 14+ AmTB-1Am

hence
Y% = lim X7 1

Y00

Substitution of X! into the mean of (34) along with some straightforward
algebra will lead into w.

C Gaussian process approach
Distribution of a new point f,

The distribution p(f, d|y, X) is obtained by computing /p (f4]y,Xn,d)Of. In

order to do so, we resort to partition the inverse of the augmented kernel matrix

—1 Cec



with
ce= [k —kKTK'K] '

c = —c. K 'k

C=K!+cKkk"K-!.

The result of this integral will lead into

1 - 1 N .
p(fe, dly, X) o< exp {— 52 (fe = F)" + 3 [(vd)2 AyPAY" — 7d2] } ;
with .
P = (C+ 8L +yAyAy™T)
and

f* = lim —vyd (c* — cTPc)71 cTPAy

Y—00

o2 = lim (c* — cTPc)_1 ,
Y—00

Derivations of 2 and f, follow.

Working out the covariance Substituting (35) into o2 gives

. -1
0? = lim (c* — cszyk) ,
y—00

with
D, =K (yAjAyT + BL) K + K.

Applying Morrison-Woodbury formula to (38)

* N

1 -1
= lim {c* — kT (DW + c*kkT) k}

Y00

= lim k. — k7 [K~' =Dk

y—00 v
Inversion of D, allows to obtain D by taking the limit,

1 -1
D;l =A"1 - A KAy (;I + KAyAAyTK> AyTKA, s.t.

D= A~ - AT'KAy (KAFAAFTK) ™ AyTKA,

where A = SKLK + K.

(38)

(39)



Working out the mean Inverting the scalar inside (36) and substituting the
value of ¢, gives

—1
fo=  lim vdoZe, kT (D,Y + c*kkT) KAy

¥—00
= lim vdo? [k, — k" (K~' = D7) k] 7' k"D 'KAy
¥ —00

~

Using the expressions for 02 along with that of A will lead into

fe= lim 7dkTD;1AlE
Y—00
1 —1
= lim d <— + AyTKA—lKAy> kTAT'KAy
y—00 Y

and the desired result
. dkTA-'KAy
- AYTKA-'KAy'

e
D Obtaining M AP solution over (3

Making
N N
V= Zn:1 Yn (Cl - fn)2 + Zn:1 (1 - yn) (CO - fn)2
= 0% + Ug.

such that the likelihood (4) becomes

N/2
p(t|f,p71) = (Qi)N/z exp {—§V}.

Then combining it with a gamma prior G (| a,b) gives a Gamma posterior of
the form G (8| N/2 + a,(V/2 + b)), that is

p(B]t,f) BN/”“leXp{—B (% +b> }

Taking the derivative of the log of this distribution and equating it to zero will
give (26).



