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Abstract Variational inference is a �exible approach to solving pro-
blems of intractability in Bayesian models. Unfortunately the conver-
gence of variational methods is often slow. We review a recently sugge-
sted variational approach for approximate inference in Gaussian process
(GP) models and show how convergence may be dramatically improved
through the use of a positive correction term to the standard variatio-
nal bound. We refer to the modi�ed bound as a KL-corrected bound.
The KL-corrected bound is a lower bound on the true likelihood, but
an upper bound on the original variational bound. Timing comparisons
between optimisation of the two bounds show that optimisation of the
new bound consistently improves the speed of convergence.

1 Introduction
A key problem with many variational approximations is the slow speed of con-
vergence. In this paper we will show how the speed of convergence for variational
approximations can be radically improved by `KL-correction' of the variational
bound. Empirically we �nd that our approach dramatically improves convergence
speed for a range of benchmark data sets.

We consider the variational approximation proposed independently by [1]
and [2]. This approximation allows us to consider the process of inference in the
Gaussian process independently of the noise model [2]. We follow [2] in referring
to this formulation of the variational approach as probabilistic point assimilation
(PPA).

The paper is laid out as follows, in Sections 2 and 3, we introduce notation
and describe the underlying probabilistic model, as well as the PPA variational
approximation and the KL-corrected bound. In Section 4 we demonstrate the
performance of the approach on some benchmark data sets, including timing
comparisons, and we conclude in Section 5 with a short discussion.

2 Gaussian Processes
Consider a data set consisting of input data, X = [x1, . . . ,xN ]T, and labels,
y = [y1, . . . , yN ]T. We will assume that the labels are dependent on an N × 1



vector, f = [f1, . . . , fN ]T through a `noise model' p (yn|fn). The label yn relates
to xn through the latent variable fn. In the case of our simple classi�cation noise
model the relationship to fn is given by,

p (yn|fn) = φ (ynfn) ,

where φ (z) =
∫ z

−∞N (t|0, 1) dt is the cumulative Gaussian distribution function
and N (z|µ, Σ) denotes a Gaussian distribution with mean µ and covariance Σ.

The latent variable is normally then related to the input data through a
Gaussian process prior [3,4] over f . For the moment we depart from this approach
and de�ne an additional spherical distribution over f ,

p
(
f |̄f , β)

=
N∏

n=1

p
(
fn|f̄n, β

)
=

N∏
n=1

N
(
fn|f̄n, β−1

)
,

where the β is a precision (inverse variance), and f̄ is a vector of means, the nth
element being f̄n. Clearly under this de�nition y is independent of X, to rectify
this we now introduce a prior distribution over f̄ ,

p
(
f̄ |X,θ

)
= N

(
f̄ |0,K

)
,

which is a Gaussian process prior over f̄ with a mean of zero and a covariance
function K. This matrix is a function of X and its form is controlled by a set
of parameters, θ. Note that this prior distribution can be combined with our
distribution over f to obtain

p (f |0,K) =
∫ N∏

n=1

p
(
fn|f̄n, β

)
N

(
f̄ |0,K

)
df̄ = N

(
f |0,K + β−1I

)
,

which, since a diagonal term is often added to the kernel matrix, does not in
practice lead to a richer model. However, as we shall see, augmentation of the
basic model with the vector of means f̄ renders the application of variational
approaches to the model more convenient.

The marginal likelihood of a data set can be obtained through marginalisation
of the latent variables f and f̄ ,

p (y|X,θ, β) =
∫

N
(
f̄ |0,K

) N∏
n=1

∫
p (yn|fn) p

(
fn|f̄n, β

)
dfndf̄ . (1)

In practise we will �nd that for non-Gaussian noise models this marginal like-
lihood will not be tractable, forcing us to turn to approximate methods.

2.1 Variational Inference
Variational inference is a popular choice for approximate inference in Bayesian
models. In [2] we showed how to implement variational inference in Gaussian



processes in a generic manner, we refered to this approach as probabilistic point
assimilation (PPA). The same approach was also independently suggested by [1]
in the context of multi-class classi�cation in Gaussian processes.

The �rst step in PPA is to introduce an approximating distribution, q
(
f̄
)
,

for the mean parameters giving

log p (y|X,θ, β) ≥
N∑

n=1

〈
log p

(
yn|f̄n, β

)〉
q(f̄) +

〈
log p

(
f̄ |X, θ

)〉
q(f̄)

− 〈
log q

(
f̄
)〉

q(f̄) . (2)

This is in e�ect the standard variational formalism for Gaussian processes. Ide-
ally we would now seek to maximise the bound through free-form optimisation
with respect to q

(
f̄
)
[5]. Unfortunately, for most noise models, such a free form

optimisation of the bound is not possible. The next step is, therefore, to assume
a form for q

(
f̄
)
which renders the bound tractable. Seeger [6] made the natural

assumption that q
(
f̄
)
is a Gaussian process and sought its mean and covariance

by maximising the resulting bound. Unfortunately this approach greatly com-
plicates the process of inference as it demands gradient based optimisation of
the variational bound, which for practicality often requires further constraints
on the posterior covariance matrix. In PPA we depart from the standard ap-
proach through introduction of a further approximating distribution, q (f), to
lower bound the �rst term of (2),

log p (y|X,θ, β) ≥
N∑

n=1

〈log p (yn|fn)〉q(fn) +
N∑

n=1

〈
log p

(
fn|f̄n, β

)〉
q(f̄n)q(fn)

+
〈
log p

(
f̄ |X, θ

)〉
q(f̄) −

N∑
n=1

〈log q (fn)〉q(fn)

− 〈
log q

(
f̄
)〉

q(f̄) = L. (3)

Each of the two lower bounds we have made use of can independently be made to
be equalities if their variational distributions are optimised, however when com-
bined they will only reach equality if the true posterior distribution factorises.
For later convenience we shall refer to this bound (3) as the standard variational
approach. The key advantage associated with introduction of the second lower
bound is that we can now perform free-form optimisation of the posterior appro-
ximations [5] in the manner of standard variational inference. Under free-form
optimisation it turns out that the approximating distribution over f factorises,
q (f) =

∏N
n=1 q (fn) , with each factor being given by

q (fn) ∝ p (yn|fn) exp
〈
log p

(
fn|f̄n, β

)〉
q(f̄n) .

Recalling that p
(
fn|f̄n, β

)
is a Gaussian distribution, we can re-write this for-

mula as
q (fn) =

1
Zn

p (yn|fn)N
(
fn|

〈
f̄n

〉
, β−1

)
, (4)



where the normalisation constant is given by Zn. The tractability of the normali-
sation constant is dependent on the form of the noise model. However, even when
Zn is analytically intractable, the integral can be solved numerically through
quadrature.

Di�erent Noise Models A key advantage of the PPA approach is that we can
make use of many di�erent noise models in (4) without signi�cantly changing
our algorithm. This is achieved in the following manner. It is well known (see
e.g. [7]) that expectations under distributions of the form given in (4) can be
computed through di�erentiation of log Zn. The mean of (4) can be shown to be

〈fn〉 =
〈
f̄n

〉
+ β−1gn

where gn = ∇〈f̄n〉 log Zn and the second moment can be shown to be

〈
f2

n

〉
= 2β−2Γn + β−1 + 2

〈
f̄n

〉 〈fn〉 −
〈
f̄n

〉2

with Γn = ∇β−1
n

log Zn. For a given noise model of interest, it is therefore only
necessary to compute log Zn = log

∫
p (yn|fn)N

(
fn|

〈
f̄n

〉
, β−1

)
dfn for it to be

used in the inference process. This was our main motivation in describing this
model within [2].

Approximating Distribution for f̄ The moments under q (fn) can be used to
�nd the form of the approximating component associated with the mean vector
f̄ . Free-form optimisation of the variational bound with respect to q

(
f̄
)
recovers

q
(
f̄
) ∝ p

(
f̄ |X, θ

) N∏
n=1

exp
〈
log p

(
fn|f̄n, βn

)〉
. (5)

This implies that q
(
f̄
)
has the form of a Gaussian process,

q
(
f̄
)

= N
(
f̄ |µ,C

)

whose posterior covariance function is given by C =
(
K−1 + βI

)−1
, while the

posterior mean function is given by µ = βC 〈f〉. Computation of the required
moments under this process posterior is straightforward, the �rst moment is
given by

〈
f̄
〉

= µ and the second moment by
〈
f̄ f̄T

〉
= C + µµT . Note that the

�rst and second moment of our posterior approximation can be computed by
inspection; contrast this with the situation in [6] where these moments must be
found through gradient based methods.

We also see that the form of q
(
f̄
)
is not directly dependent on the form of

the noise model. This dependence occurs through the latent variables f .



3 Updating Parameters

One of the advantages of the Gaussian process framework is that we can seek to
optimise kernel parameters through optimisation of the model's log-likelihood. In
approximate variational inference direct optimisation of the marginal likelihood
is not possible; instead we seek to maximise the variational lower bound. For our
model the relevant terms of the bound are

L (β, θ) =
〈
log p

(
f̄ |X,θ

)〉
q(f̄) +

N∑
n=1

〈
log p

(
fn|f̄n, β

)〉
q(f̄n)q(fn)

= L (θ) (6)

The bound is normally optimised with respect to θ by gradient based methods.

3.1 KL-Corrected Inference

A common problem with variational methods is slow convergence to a maximum.
This can occur if the quality of the bound as a function of the parameters, L (θ),
falls away rapidly as θ changes. In other words convergence will be slow if the
quality of the bound is very sensitive to changes in the parameters. The e�ect is
shown in Figure 1(a). The motivation behind this paper was to discover whether
we could obtain an upper bound, L′ (θ), on (3) which is also a lower bound on
the true likelihood, then we are also likely to achieve faster convergence. The
intuition behind this idea is shown schematically in Figure 1(b). If L′ (θ) is an
upper bound on L (θ) and a lower bound on the true likelihood L (θ) then its
maxima is likely to be closer to the maxima of L (θ) than the maxima of L (θ)
is.

An Improved Bound Ideally we would like to optimise the marginal like-
lihood,

L (θ) = log p (y|X, θ, β) = log
∫ N∏

n=1

p
(
yn|f̄n, β

)
p

(
f̄ |X, θ

)
df̄ , (7)

with respect to θ; unfortunately the integral is, in general, intractable. We pre-
viously discussed the fact that the log of the noise model can be lower bounded
variationally. This lower bound is maintained when taking the exponential of
both sides (as the exponential is a monotonic function). Thus, the noise model
is lower bounded by

p
(
yn|f̄n, βn

) ≥ exp
(
〈log p (yn|fn)〉q(fn) +

〈
log p

(
fn|f̄n, β

)〉
q(fn)

−〈log q (fn)〉q(fn)

)
. (8)
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Figure 1. Variational optimisation. (a) The schematic shows the log likelihood, L (θ)
as a function of the parameters and the variational lower bound, L (θ). The lower bound
is shown as being quadratic in the parameters. The bound shown has been maximised
with respect to the q-distributions for a set of parameters θ′, however the bound falls
away sharply for quite small changes in θ. As a result optimisation of the lower bound
with respect to θ leads to only a small change ∆θ. Many iterations are required for
convergence. (b) Here we show a schematic of the e�ect of KL-correction of the bound.
The bound is less sensitive to the variational distributions and it falls away from the
likelihood less quickly, as a result larger steps are taken when θ is optimised.

Substituting this expression into the marginal log likelihood (7) gives the follo-
wing lower bound

L′ (θ) = log
∫ N∏

n=1

exp
〈
log p

(
fn|f̄n, β

)〉
q(fn)

p
(
f̄ |X,θ

)
df̄ −

N∑
n=1

〈log q (fn)〉q(fn)

+
N∑

n=1

〈log p (yn|fn)〉q(fn) ≤ L (θ) . (9)

Note that the only term in this bound which is now dependent on θ is the �rst
term. The integral in this term can be computed analytically. To see this we �rst
rewrite it as a Gaussian integral,

L′ (θ) = log
∫ N∏

n=1

exp
〈
log p

(
fn|f̄n, β

)〉
q(fn)

p
(
f̄ |X, θ

)
df̄ + const

= log
∫ N∏

n=1

N
(〈fn〉 |f̄n, β−1

)
p

(
f̄ |X,θ

)
df̄ + const, (10)

leading to a tractable objective function for θ that does not directly depend on
q
(
f̄
)
. The result is a new bound that is actually an upper bound on the original

variational lower bound. It thus has the characteristics suggested in Section 3.1
which are conducive to faster convergence.



Positive Correction Term The KL-corrected bound is still a lower bound
on the log-likelihood, however it is typically a tighter bound than the standard
variational bound: it contains a correction term which is always positive or zero.
The KL-corrected bound (9) can be rewritten using (3) as

L (θ) ≥ L (θ) + KL
(
q
(
f̄
) ||p (

f̄ | 〈f〉 ,X,θ
))

where KL
(
q
(
f̄
) ||p (

f̄ | 〈f〉X,θ
))

is the Kullback-Leibler divergence1 between the
distribution q

(
f̄
)
and

p
(
f̄ | 〈f〉 ,X,θ

) ∝
N∏

n=1

N
(〈fn〉 |f̄n, β−1

)
p

(
f̄ |X, θ

)
.

This implies that the di�erence between the KL-corrected bound and the tra-
ditional variational bound is the Kullback-Leibler divergence between q

(
f̄
)
and

p
(
f̄ | 〈f〉 ,X, θ

)
. Inspection of (5) shows that this divergence is zero after updates

of q
(
f̄
)
. However, as θ changes the divergence will become non-zero and provide

a positive correction to the standard variational bound in the manner depicted
in Figure 1(b). The KL-corrected objective is therefore a lower bound on the
marginal likelihood and an upper bound on the traditional variational objective.
Optimisations of the KL-corrected objective are therefore guaranteed to con-
verge. In Section 4 we will show that empirically this convergence is much faster
than that of the standard variational optimisation. Before that we will consider
the KL-corrected bound in more detail.

3.2 Inference on the Corrected Bound
So far we have discussed optimising the KL-corrected bound primarily with re-
spect to the parameters of the kernel function. Optimisation with respect to β
is also straightforward. However, we have implicitly assumed that we will �nd
q (fn) by optimising the original variational bound (which also entails optimi-
sation of q

(
f̄
)
). In this section we consider the possibility of updating q (fn)

through optimisation of the KL-corrected bound. To do this we �rst consider
the dependence of the KL-corrected bound (9) on q (fn). First we make use of
the fact that p

(
fn|f̄n, β

)
= N

(
fn|f̄n, β−1

)
to rewrite

〈
log p

(
fn|f̄n, β

)〉
= log N

(〈fn〉 |f̄n, β−1
)− cn

where cn has the form cn = β
2

(〈
f2

n

〉− 〈fn〉2
)

. The integral in the �rst term of
(9) can now be computed analytically by making use of the fact that p

(
f̄ |X, θ

)
=

N
(
f̄ |0,K

)
and

log
∫ N∏

n=1

N
(〈fn〉 |f̄n, β−1

)
N

(
f̄ |0,K

)
df̄ = log N

(〈f〉 |0,
(
K + β−1I

))
.

1 The Kullback-Leibler divergence between two distributions is de�ned as
KL (q (x) ||p (x)) =

R
q (x) log q(x)

p(x)
dx.



We are interested in the dependence of this term on a particular q (fn). This
can be obtained by factorising the distibution,

p (〈f〉) = p
(〈fn〉 |

〈
f\n

〉)
p

(〈
f\n

〉)
,

where only the �rst term of this factorisation is dependent on q (fn). This con-
ditional distribution has the form of a Gaussian,

p
(〈fn〉 |

〈
f\n

〉)
= N

(〈fn〉 |µn, σ2
n

)
,

with mean µn = kT
\n

(
K\n + β−1I

)−1 〈
f\n

〉
and variance

σ2
n = β−1 + knn − kT

\n
(
K\n + β−1I

)−1
k\n,

where k\n is the nth column of the covariance matrix with the nth element
removed, K\n is the covariance matrix with the nth row and column removed
and f\n is the vector f with the nth element removed. The terms of (9) which
are dependent on q (fn) are then given by

L′n (θ) = − 〈
log N

(
fn|µn, σ2

n

)〉
+ 〈log p (yn|fn)〉+ 〈log q (fn)〉q(fn)

+δn − 1
2

log 2πσ2
n

where
δn =

1
2

(
β − 1

σ2
n

) (〈
f2

n

〉− 〈fn〉2
)

. (11)

Now if we assume that δn is relatively insensitive to changes in q (fn) then we
can optimise the KL-corrected bound with respect to q (fn) to obtain

q (fn) ∝ p (yn|fn) N
(
fn|µn, σ2

n

)
(12)

where we recall that from our de�nitions N
(
fn|µn, σ2

n

)
is the prediction at the

nth point having removed the nth point from our data set. In the statistical phy-
sics literature this is known as a cavity distribution. Such cavity distributions
are reminiscent of TAP approximations and the expectation propagation algo-
rithm [8,7]. Of course, there is in general no guarantee that δn will be insensitive
to changes in q (fn), however it is still possible to make use of this update in
place of the variational updates (of q

(
f̄
)
and q (fn)) but it may be prudent to

check that the KL-corrected bound is higher than that generated by the stan-
dard variational updates after updating q (fn). In the experiments in Section 4
we chose to always make use of the standard update so that we knew that any
resulting increase in convergence speed was entirely due to optimisation of (9)
with respect to the parameters θ.

3.3 Monitoring Convergence
Convergence of the algorithm can be monitored through evaluation of (9). Ho-
wever, this bound contains an expectation of log p (yn|fn) under the noise model



which will typically require quadrature to compute. However, if we only compute
the bound after updating q (fn) then we �nd (9) may be replaced by

L′c (θ) = log N
(〈f〉 |0,K + β−1I

)−
N∑

n=1

log N
(〈fn〉 |

〈
f̄n

〉
, β−1

)
+

N∑
n=1

log Zn

which will only require quadrature if Zn requires quadrature (see Section 2.1).

4 Results

We performed a series of classi�cation experiments with benchmark data sets to
evaluate the performance of the PPA algorithm. For comparison we also include
published results from the support vector machine on these data sets. In all our
experiments we ordered updates as speci�ed in Algorithm 1. Code for recreating
our results is available on-line, for details see Appendix A.

Algorithm 1 Optimisation of the Gaussian Process with PPA. Note that al-
gorithmically it is still necessary to update q

(
f̄
)
for both variational and KL-

corrected approaches as it is a pre-requisite for computation of each q (fn).
Inputs X = [x1, . . .xN ]T and outputs y = [y1, . . . ,yN ]T, a convergence tolerance,
initial values for β and θ.

E-Step � Iterate over the q-distributions
Update



f̄
�
and



f̄ f̄T
�
.

Calculate g and Γ based on the given noise model.
n = 1 : N
Update 〈fn〉 and



f2

n

�
*
M-Step � Update the parameters
Use gradient based optimisation for updating θ.
For standard variational approach optimise (3), for KL-corrected approach optimise
(9).
Update β
bound on likelihood changes by less than the convergence tolerance.

4.1 Convergence Speed

We �rst considered a synthetic data set banana [9]. This data set consists of
two dimensional inputs sampled from Gaussian distributions. One hundred trai-
ning/test partitions of the data are provided. We used the �rst partition to
illustrate the improvements in training speed gained by using the KL-corrected
objective function instead of the standard variational lower bound. The results



are shown in Figure 2 (a). They show almost two orders of magnitude improve-
ment in convergence in terms of iterations. These �gures carry over into impro-
vement in terms of timing as well. The �nal learnt decision boundary is shown
in Figure 2 (b).
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Figure 2. (a) Plot of log-likelihood vs iteration number (log-scale) for the KL-corrected
objective function (solid line) and the standard variational bound (dashed line). KL-
corrected requires 120 iterations for convergence while the standard variational ap-
proach requires 4102 iterations. The point of convergence for each line is marked on
the plot with a cross. Note that both approaches converge to the same likelihood. (b)
The resulting classi�cation of the banana data set. Decision boundaries are given by
solid lines, the dashed lines indicate contours at 0.25 and 0.75 probabilities.

As well as the synthetic set, banana, we tested the algorithm using seven
other data sets from theUCI,DELVE and STATLOG benchmark repositories
with partitions provided by [9]. To allow the classi�cation error comparisons to be
accurate, we mimicked the experimental setup found in [9] as far as possible. Each
data set is presented as a binary classi�cation problem and partitioned into 100
di�erent training and test data sets. In [9] kernel parameters were chosen through
running 5-fold cross validation on the �rst �ve realisations of each data set. The
median of the parameters was then chosen. In PPA the marginal likelihood can
be maximised to obtain the kernel parameters. Therefore, for these methods, no
cross validation was used. We simply maximised the lower bound on the marginal
likelihood for the �rst �ve data sets. The kernel parameters associated with the
median RBF kernel width were then used for all data sets to compute the �nal
results.

In Figure 3 we provide convergence plots for several of the data sets. Con-
vergence plots and CPU timings were generated using the �rst partition of each
data set. The �nal classi�cation error is provided in Table 1 (a). Also included in
this table for interest are the classi�cation results reported by [9] for the SVM.
The total time for convergence is given in Table 1 (b).



The experimental results show that a Gaussian Process with variational in-
ference through PPA has broadly similar performance to the support vector
machine (as we might expect).
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Figure 3. (a) Convergence plot for (i) twonorm data set and (ii) German data set.
(b) convergence plot for (i) titanic data set, (ii) breast-cancer data set and (iii)
waveform data set. Each plot shows the bound on the likelihood vs iteration number
for the KL-corrected objective function (solid line) and the standard variational bound
(dashed line).

5 Discussion

We have presented a correction to the standard variational bound in the context
of Gaussian process models. The KL-corrected bound leads to an much improved
speed up for variational learning, without losing the guarantee of convergence.
In experiments on benchmark data, the bound lead to a speed increase for all
our experiments. The lowest speed up was 5.89 times faster whilst the highest
was 103 times faster.

There is potential for KL-correction to be applied in other models and not
just when Gaussian likelihoods and priors are used. We discussed how updates
with respect to the marginal variational approximations, q (fn), could also be
done to optimise the KL-corrected bound, but we leave exploration of these
updates and a study of the general conditions for which KL-correction can be
applied to further work.

A On-line Source Code

The source code for re-running all the experiments detailed here is available
online from http://www.dcs.shef.ac.uk/~neil/ppa/.



Table 1. (a) shows the classi�cation error results of experiments with benchmark data
sets compared to published results. The SVM results are taken from [9]. (b) displays
CPU time comparisons for the experiments with benchmark data sets. Timings are
given for the standard variational approach (Std) and the KL-corrected approach
(Klc). The increase in speed is summarised by the speed up factor. Average speed up
was 25.6.

Time Speed
Dataset SVM GP-PPA Dataset Std Klc Up

/103s /103s Factor
Banana 11.5± 0.7 10.9± 0.5 Banana 22.5 1.13 19.9
B. Cancer 26.0± 4.7 29.4± 5.0 B. Cancer 4.10 0.187 21.9
Diabetes 23.5± 1.7 23.0± 2.0 Diabetes 34.2 3.92 8.75
German 23.6± 2.1 23.9± 2.0 German 111 1.08 103
Heart 16.0± 3.3 17± 3.0 Heart 2.77 0.153 18.1
Titanic 22.4± 1.0 23.2± 0.3 Titanic 1.94 0.0919 21.1
Twonorm 3.0± 0.2 2.8± 0.3 Twonorm 30.0 4.67 6.42
Waveform 9.9± 0.4 11.9± 0.4 Wavenorm 36.3 6.16 5.89

(a) (b)
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